首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was recently demonstrated that herpes simplex virus (HSV) successfully infects Chinese hamster ovary (CHO) cells expressing glycoprotein D (gD) receptors and HeLa cells by an endocytic mechanism (A. V. Nicola, A. M. McEvoy, and S. E. Straus, J. Virol. 77:5324-5332, 2003). Here we define cellular and viral requirements of this pathway. Uptake of intact, enveloped HSV from the cell surface into endocytic vesicles was rapid (t(1/2) of 8 to 9 min) and independent of the known cell surface gD receptors. Following uptake from the surface, recovery of intracellular, infectious virions increased steadily up to 20 min postinfection (p.i.), which corresponds to accumulation of enveloped virus in intracellular compartments. There was a sharp decline in recovery by 30 min p.i., suggesting loss of the virus envelope as a result of capsid penetration from endocytic organelles into the cytosol. In the absence of gD receptors, endocytosed virions did not successfully penetrate into the cytosol but were instead transported to lysosomes for degradation. Inhibitors of phosphatidylinositol (PI) 3-kinase, such as wortmannin, blocked transport of incoming HSV to the nuclear periphery and virus-induced gene expression but had no effect on virus binding or uptake. This suggests a role for PI 3-kinase activity in trafficking of HSV through the cytosol. Viruses that lack viral glycoproteins gB, gD, or gH-gL were defective in transport to the nucleus and had reduced infectivity. Thus, similar to entry via direct penetration at the cell surface, HSV entry into cells by wortmannin-sensitive endocytosis is efficient, involves rapid cellular uptake of viral particles, and requires gB, gD, and gH-gL.  相似文献   

2.
When p-fluorophenylalanine (FPA) was added to influenza virus RI/5+-infected cells 4 hr after infection, virus-specific proteins were synthesized but infectious progeny virus was not produced. In these cells, synthesis of viral RNA was strongly inhibited and nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to untreated cells in which NP antigen was distributed throughout the whole cell. The intracellular location and migration of NP were examined by isotope labeling followed by fractionation of infected cells. In untreated cells, a large portion of the NP was present in the cytoplasm and most of it was detected in the form of ribonucleoprotein (RNP). In contrast, in FPA-treated cells little viral RNP was detectable and NP was present predominantly in the nucleus in a nonassembled, soluble form. When FPA was removed from the culture, synthesis of viral RNA was soon restored and a large amount of viral RNP appeared in the cytoplasm; this was followed by the production of infectious virus. The results of the experiments suggest that the NP synthesized in the presence of FPA is not assembled into viral RNP because of the lack of available RNA, and such NP migrates readily into the nucleus and accumulates there.  相似文献   

3.
4.
5.
When 1–5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by four successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cells NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble form and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells is not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.  相似文献   

6.
K Martin  A Helenius 《Cell》1991,67(1):117-130
Because influenza virus replicates in the nucleus and buds from the plasma membrane, its ribonucleoproteins (RNPs) must undergo bidirectional transport across the nuclear membrane. Export from the nucleus to the cytoplasm was found to depend on the viral matrix protein (M1). M1 associated with newly assembled viral RNPs (vRNPs) in the nucleus and escorted them to the cytoplasm through the nuclear pores. In contrast, during entry of the virus into a new host cell, M1 protein dissociated from the RNPs, allowing them to enter the nucleus. Amantadine, an antiviral agent that induces an early block in influenza A infection, was found to block the dissociation event and thereby to prevent import of incoming RNPs into the nucleus. Together, these results showed that M1 modulates the directionality of vRNP transport into and out of the nucleus.  相似文献   

7.
An electron microscope study was carried out on the early minutes of herpes simplex virus (HSV) and cytomegalovirus (CMV) penetration into WI-38 cells. Both HSV and CMV entered cells either by fusion of the viral envelope with a limiting cell membrane, or via phagocytosis. Both fusion and phagocytosis occurred within 3 min after the initiation of penetration. After fusion, the naked capsids of CMV free in the cytoplasm became coated with a fine, fibrillar material. CMV capsids thus coated retained a well-defined and easily identifiable morphology until the eclipse of visible viral particles between 1 and 1.5 days postinfection. In contrast, naked HSV capsids free in the cytoplasm were never coated. Rather, within minutes after penetration, they assumed a rounded, less regular outline, and were no longer detectable by 90 to 120 min postinfection. The free naked capsids of both viruses appeared to migrate across the cytoplasm toward the nucleus and to become located near nuclear pores. Both HSV and CMV capsids reached the nucleus as early as 5 min after the initiation of penetration. No further interaction with the nucleus could be documented. Particles were also consistently identified in the Golgi region. Phagocytosed particles generally remained within phagosomes, where they appeared to be degraded. However, stages were identified in what is believed to be the escape of enveloped viruses from phagosomes into the cytoplasm via fusion of their envelope with the phagosomal membrane.  相似文献   

8.
The matrix (M1) protein of influenza virus is a major structural component, involved in regulation of viral ribonucleoprotein transport into and out of the nucleus. Early in infection, M1 is distributed in the nucleus, whereas later, it is localized predominantly in the cytoplasm. Using immunofluorescence microscopy and the influenza virus mutant ts51, we found that at the nonpermissive temperature M1 was retained in the nucleus, even at late times after infection. In contrast, the viral nucleoprotein (NP), after a temporary retention in the nucleus, was distributed in the cytoplasm. Therefore, mutant M1 supported the release of the viral ribonucleoproteins from the nucleus, but not the formation of infectious virions. The point mutation in the ts51 M1 gene was predicted to encode an additional phosphorylation site. We observed a substantial increase in the incorporation of 32Pi into M1 at the nonpermissive temperature. The critical role of this phosphorylation site was demonstrated by using H89, a protein kinase inhibitor; it inhibited the expression of the mutant phenotype, as judged by M1 distribution in the cell. Immunofluorescence analysis of ts51-infected cells after treatment with H89 showed a wild-type phenotype. In summary, the data indicated that the ts51 M1 protein was hyperphosphorylated at the nonpermissive temperature and that this phosphorylation was responsible for its aberrant nuclear retention.  相似文献   

9.
The role of the nuclear pore complex in adenovirus DNA entry.   总被引:20,自引:1,他引:19       下载免费PDF全文
Adenovirus targets its genome to the cell nucleus by a multistep process involving endocytosis, membrane penetration and cytoplasmic transport, and finally imports its DNA into the nucleus. Using an immunochemical and biochemical approach combined with inhibitors of nuclear import, we demonstrate that incoming viral DNA and DNA-associated protein VII enter the nucleus via nuclear pore complexes (NPCs). Depletion of calcium from nuclear envelope and endoplasmic reticulum cisternae by ionophores or thapsigargin blocked DNA and protein VII import into the nucleus, but had no effect on virus targeting to NPCs. Calcium-depleted cells were capable of disassembling incoming virus. In contrast, inhibitors of cytosolic O-linked glycoproteins of the NPC blocked virus attachment to the nuclear envelope, capsid disassembly and also nuclear import of protein VII. The data indicate that NPCs have multiple roles in adenovirus entry into cells: they contain a virus-binding and/or dissociation activity and provide a gateway for the incoming DNA genome into the nucleus.  相似文献   

10.

Background

Influenza A virus has a RNA-dependent RNA polymerase (RdRp) that is composed of three subunits (PB1, PB2 and PA subunit), which assemble with nucleoproteins (NP) and a viral RNA (vRNA) to form a RNP complex in the host nucleus. Recently, we demonstrated that the combination of influenza ribonucleoprotein (RNP) components is important for both its assembly and activity. Therefore, we questioned whether the inhibition of the RNP combination via an incompatible component in the RNP complex could become a methodology for an anti-influenza drug.

Methodology/Principal Findings

We found that a H5N1 PB2 subunit efficiently inhibits H1N1 RNP assembly and activity. Moreover, we determined the domains and important amino acids on the N-terminus of the PB2 subunit that are required for a strong inhibitory effect. The NP binding site of the PB2 subunit is important for the inhibition of RNP activity by another strain. A plaque assay also confirmed that a fragment of the PB2 subunit could inhibit viral replication.

Conclusions/Significance

Our results suggest that the N-terminal fragment of a PB2 subunit becomes an inhibitor that targets influenza RNP activity that is different from that targeted by current drugs such as M2 and NA inhibitors.  相似文献   

11.
Liu T  Ye Z 《Journal of virology》2004,78(18):9585-9591
Our previous studies with influenza A viruses indicated that the association of M1 with viral RNA and nucleoprotein (NP) is required for the efficient formation of helical ribonucleoprotein (RNP) and for the nuclear export of RNPs. RNA-binding domains of M1 map to the following two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105. Altering the zinc finger motif of M1 reduces viral growth slightly. A substitution of Ser for Arg at either position 101 or position 105 of the RKLKR domain partially reduces the nuclear export of RNP and viral replication. To further understand the role of the zinc finger motif and the RKLKR domain in viral assembly and replication, we introduced multiple mutations by using reverse genetics to modify these regions of the M gene of influenza virus A/WSN/33. Of multiple mutants analyzed, a double mutant, R101S-R105S, of RKLKR resulted in a temperature-sensitive phenotype. The R101S-R105S double mutant had a greatly reduced ratio of M1 to NP in viral particles and a weaker binding of M1 to RNPs. These results suggest that mutations can be introduced into the RKLKR domain to control viral replication.  相似文献   

12.
Herpesviruses infect cells by fusion of the viral envelope with cellular membranes, primarily the plasma membrane. During this process structural components of the mature virion are lost from the invading nucleocapsid, which then travels along microtubules to the nuclear pore. We examined the penetration process by immunoelectron microscopy and analyzed which of the major tegument proteins remained associated with the incoming capsid. We show that the UL36, UL37, and US3 proteins were present at intracytoplasmic capsids after penetration, whereas the UL11, UL47, UL48, and UL49 tegument proteins were lost. Thus, the three capsid-associated tegument proteins are prime candidates for viral proteins that interact with cellular motor proteins for transport of nucleocapsids to the nucleus.  相似文献   

13.
The plaque-assay technique was used as a tool to determine the optimal conditions for adsorption of polyoma virions to host cells. Using these optimal conditions of adsorption, an electron microscopy study of the early events of infection was performed. By electron microscopy and autoradiography, it was demonstrated that both the viral coat proteins and DNA arrive simultaneously in the nucleus as early as 15 min postinfection. When horseradish peroxidase-labeled virions, pseudovirions, and capsids were used to infect cells, only the particles with nucleic acid or a factor(s) associated with the nucleic acid, i.e., histones, appeared to enter the nucleus. Moreover, when virions were used to infect either permissive or nonpermissive cells, identical early events of viral infection, i.e., adsorption, penetration, and nuclear transport, were observed, suggesting that these early events of infection are a property of the virion and not the host cell.  相似文献   

14.
15.
Herpes simplex virus 1 fuses with the plasma membrane of a host cell, and the incoming capsids are efficiently and rapidly transported across the cytosol to the nuclear pore complexes, where the viral DNA genomes are released into the nucleoplasm. Using biochemical assays, immunofluorescence, and immunoelectron microscopy in the presence and absence of microtubule depolymerizing agents, it was shown that the cytosolic capsid transport in Vero cells was mediated by microtubules. Antibody labeling revealed the attachment of dynein, a minus end–directed, microtubule-dependent motor, to the viral capsids. We propose that the incoming capsids bind to microtubules and use dynein to propel them from the cell periphery to the nucleus.  相似文献   

16.
Liu T  Ye Z 《Journal of virology》2002,76(24):13055-13061
The matrix protein (M1) of influenza virus plays an essential role in viral assembly and has a variety of functions, including association with influenza virus ribonucleoprotein (RNP). Our previous studies show that the association of M1 with viral RNA and nucleoprotein not only promotes formation of helical RNP but also is required for export of RNP from the nucleus during viral replication. The RNA-binding domains of M1 have been mapped to two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105, which is also involved in RNP-binding activity. To further understand the role of the RNP-binding domain of M1 in viral assembly and replication, mutations in the coding sequences of RKLKR and the zinc finger motif of M1 were constructed using a PCR technique and introduced into wild-type influenza virus by reverse genetics. Altering the zinc finger motif of M1 only slightly affected viral growth. Substitution of Arg with Ser at position 101 or 105 of RKLKR did not have a major impact on nuclear export of RNP or viral replication. In contrast, deletion of RKLKR or substitution of Lys with Asn at position 102 or 104 of RKLKR resulted in a lethal mutation. These results indicate that the RKLKR domain of M1 protein plays an important role in viral replication.  相似文献   

17.
Endocytosis of simian virus 40 into the endoplasmic reticulum   总被引:18,自引:7,他引:11       下载免费PDF全文
《The Journal of cell biology》1989,109(6):2721-2729
The endocytosis of SV-40 into CV-1 cells we studied using biochemical and ultrastructural techniques. The half-time of binding of [35S]methionine-radiolabeled SV-40 to CV-1 cells was 25 min. Most of the incoming virus particles remained undegraded for several hours. Electron microscopy showed that some virus entered the endosomal/lysosomal pathway via coated vesicles, while the majority were endocytosed via small uncoated vesicles. After infection at high multiplicity, one third of total cell-associated virus was observed to enter the ER, starting 1-2 h after virus application. The viruses were present in large, tubular, smooth membrane networks generated as extentions of the ER. The results describe a novel and unique membrane transport pathway that allows endocytosed viral particles to be targeted from the plasma membrane to the ER.  相似文献   

18.
19.
Ribonucleoprotein (RNP) cores with RNA-synthesizing activity were prepared in two fractions, M protein-free and M protein-associated, from detergent-treated influenza virus PR8 by centrifugation through a discontinuous triple gradient of cesium sulfate, glycerol, and NP-40. The M-free RNP was fractionated by phosphocellulose column chromatography into two major RNP forms, A and B, which differed in the content of P proteins, while the M-associated RNP gave only the low P-content Form-B RNP. Starting from the high P-content Form-A RNP, an RNA-P proteins complex virtually free from NP protein was isolated by cesium sulfate equilibrium centrifugation. The complex, containing only three P proteins (P1, P2, and P3), was still active in catalyzing RNA synthesis in vitro without addition of exogenous template, indicating that NP protein is not required for the catalysis of RNA synthesis. RNA synthesis by the isolated RNA-P proteins complex was dependent on either ApG or capped RNA primers, and required four ribonucleoside triphosphates as substrates. The RNA product in this reaction was hybridizable to viral RNA. A complex of one each of the three P proteins was separated from RNA by glycerol gradient centrifugation after ribonuclease treatment or cesium chloride equilibrium centrifugation.  相似文献   

20.
After fusion of the viral envelope with the plasma membrane, herpes simplex virus type 1 (HSV1) capsids are transported along microtubules (MTs) from the cell periphery to the nucleus. The motor ATPase cytoplasmic dynein and its multisubunit cofactor dynactin mediate most transport processes directed toward the minus-ends of MTs. Immunofluorescence microscopy experiments demonstrated that HSV1 capsids colocalized with cytoplasmic dynein and dynactin. We blocked the function of dynein by overexpressing the dynactin subunit dynamitin, which leads to the disruption of the dynactin complex. We then infected such cells with HSV1 and measured the efficiency of particle binding, virus entry, capsid transport to the nucleus, and the expression of immediate-early viral genes. High concentrations of dynamitin and dynamitin-GFP reduced the number of viral capsids transported to the nucleus. Moreover, viral protein synthesis was inhibited, whereas virus binding to the plasma membrane, its internalization, and the organization of the MT network were not affected. We concluded that incoming HSV1 capsids are propelled along MTs by dynein and that dynein and dynactin are required for efficient viral capsid transport to the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号