首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the example of three synthetic allopolyploids: Aegilops sharonensis x Ae. umbellulata (2n =28), Triticum urartu x Ae. tauschii (2n =28), T. dicoccoides x Ae. tauschii (2n =42) the 5S rDNA changes at the early stage of allopolyploidization were investigated. Using fluorescent in situ hybridization (FISH), the quantitative changes affecting the separate loci of one of the parental genomes were revealed in plants of S3 generation of each hybrid combination. Souther hybridization with genomic DNA of allopolyploid T. urartu x Ae. tauschii (TMU38 x TQ27) revealed lower intensity of the fragments from Ae. tauschii compared with the T. urartu fragments. It may be confirmation of the reduction of signal on 1D chromosome that was revealed in this hybrid using FISH. Both appearance of a new 5S rDNA fragments and full disappearance of fragments from parental species were not showed by Southern hybridization, as well as PCR-analysis of 5-15 plants of S2-S3 generations. The changes were not found under comparison of primary structure of nine 5S rDNA sequences of allopolyploid TMU38 x TQ27 with analogous sequences from parental species genomes. The observable similarity by FISH results of one of the studied synthetic allopolyploids with natural allopolyploid of similar genome composition indicates the early formation of unique for each allopolyploid 5S rDNA organization.  相似文献   

2.
3.
4.
几种蚊虫线粒体DNA-16SrRNA序列及其相互关系的研究   总被引:10,自引:1,他引:9  
测定我国尖音库蚊复合组4亚种(尖音库蚊、淡色库蚊、致倦库蚊和骚扰库蚊)、三带喙库蚊、白纹伊蚊和中华按蚊的线粒体DNA 16S rRNA基因(mtDNA-16S rRNA)序列,发现我国尖音库蚊复合组4亚种mtDNA-16S rRNA序列基本一致,长度为555bp(554bp),GC含量为25.41%。该序列与其他3种蚊虫在种间存在差异,与三带喙库蚊的种间差异为0.54%;与白纹伊蚊的种间差异为5.77%;与中华按蚊的种间差异为9.62%。分子系统关系分析表明该序列与传统分类系统的同属或同亚科种类近似性相一致。  相似文献   

5.
There are at least nine, and probably ten, ribosomal RNA gene sets in the genome of Bacillus subtilis. Each gene set contains sequences complementary to 16S, 23S and 5S rRNAs. We have determined the nucleotide sequences of two DNA fragments which each contain 165 base pairs of the 16S rRNA gene, 191 base pairs of the 23S rRNA gene, and the spacer region between them. The smaller space region is 164 base pairs in length and the larger one includes an additional 180 base pairs. The extra nucleotides could be transcribed in tRNAIIe and tRNA Ala sequences. Evidence is also presented for the existence of a second spacer region which also contains tRNAIIe and tRNA Ala sequences. No other tRNAs appear to be encoded in the spacer regions between the 16S and 23S rRNA genes. Whereas the nucleotide sequences corresponding to the 16S rRNA, 23S rRNA and the spacer tRNAs are very similar to those of E. coli, the sequences between these structural genes are very different.  相似文献   

6.
Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated sequence content in a genome, we suggest that the amount and activity of repeated sequences are important factors determining the number of genes in a genome.  相似文献   

7.
8.
The 23S ribosomal RNA (rRNA) gene has been sequenced in strains of the fish pathogens Photobacterium damselae subsp. damselae (ATCC 33539) and subsp. piscicida (ATCC 29690), showing that 3 nucleotide positions are clearly different between subspecies. In addition, the 5S rRNA gene plus the intergenic spacer region between the 23S and 5S rRNA genes (ITS-2) were amplified, cloned and sequenced for the 2 reference strains as well as the field isolates RG91 (subsp. damselae) and DI21 (subsp. piscicida). A 100% similarity was found for the consensus 5S rRNA gene sequence in the 2 subspecies, although some microheterogeneity was detected as inter-cistronic variability within the same chromosome. Sequence analysis of the spacer region between the 23S and 5S rRNA genes revealed 2 conserved and 3 variable nucleotide sequence blocks, and 4 different modular organizations were found. The ITS-2 spacer region exhibited both inter-subspecies and intercistronic polymorphism, with a mosaic-like structure. The EMBL accession numbers for the 23S, 5S and ITS-2 sequences are: P. damselae subsp. piscicida 5S gene (AJ274379), P. damselae subsp. damselae 23S gene (Y18520), subsp. piscicida 23S gene (Y17901), P. damselae subsp. piscicida ITS-2 (AJ250695, AJ250696), P. damselae subsp. damselae ITS-2 (AJ250697, AJ250698).  相似文献   

9.
10.
The nucleotide sequence of an 8 kbp region of pea ( Pisum sativum L.) chloroplast DNA containing the rRNA operon and putative promoter sites has been determined and compared to the corresponding sequences from maize, tobacco and the liverwort Marchantia polymorpha . The chloroplast DNA species of all vascular plants investigated, with the exception of a few legumes including pea, and of Marchantia contain an inverted repeat with an rRNA operon. The pea rRNA operon is the first sequenced rRNA operon from a plant with only one copy of the rRNA genes per molecule of chloroplast DNA. The organization of the operon is the same as for maize, tobacco and Marchantia . i.e. tRNA-Val gene/16S rRNA gene/spacer with intron-containing genes for tRNA-Ile and tRNA-Ala/23S rRNA gene/4.5S rRNA gene/5S rRNA gene. Current evidence suggests that the tRNA-Val gene may not be contranscribed with the other genes. For pea 16S, 23S, 4.5S and 5S rRNA have 1488, 2813, 105 and 121 nucleotides, respectively. The homologies of the entire operon (the tRNA-Val gene - 5S rRNA region) to those from tobacco, maize and Marchantia are 88, 82 and 79%, respectively. The corresponding homologies for tobacco/maize, tobacco/ Marchantia and maize/ Marchantia have similar values. The 16S and 23S rRNA genes from pea are more than 90% homologous to those from the 3 other species. We conclude that the fact that pea only has one set of rRNA genes per molecule of chloroplast DNA is apparently not correlated with any significant difference between the pea operon and the rRNA operons from tobacco, maize and Marchantia .  相似文献   

11.
Velocity sedimentation studies of RNA of Sarcophaga bullata show that the major rRNA species have sedimentation values of 26S and 18S. Analysis of the rRNA under denaturing conditions indicates that there is a hidden break centrally located in the 26S rRNA species. Saturation hybridization studies using total genomic DNA and rRNA show that 0.08% of the nuclear DNA is occupied by rRNA coding sequences and that the average repetition frequency of these coding sequences is approximately 144. The arrangement of the rRNA genes and their spacer sequences on long strands of purified rDNA was determined by the examination of the structure of rRNa:DNA hybrids in the electron microscope. Long DNA strands contain several gene sets (18S + 26S) with one repeat unit containing the following sequences in order given: (a) An 18S gene of length 2.12 kb, (b) an internal transcribed spacer of length 2.01 kb, which contains a short sequence that may code for a 5.8S rRNA, (c) A 26S gene of length 4.06 kb which, in 20% of the cases, contains an intron with an average length of 5.62 kb, and (d) an external spacer of average length of 9.23 kb.  相似文献   

12.
13.
New classes of repetitive DNA elements were effectively identified by isolating small fragments of the elements from the wheat genome. A wheat A genome library was constructed from Triticum monococcum by degenerate cleavage with EcoO109I, the recognition sites of which consisted of 5'-PuGGNCCPy-3'multi-sequences. Three novel repetitive sequences pTm6, pTm69 and pTm58 derived from the A genome were screened and tested for high copy number using a blotting approach. pTm6 showed identity with integrase domains of the barley Ty1-Copia-retrotransposon BARE-1 and pTm58 showed similarity to the barley Ty3-gypsy-like retrotransposon Romani. pTm69, however, constituted a tandem array with useful genomic specificities, but did not share any identity with known repetitive elements. This study also sought to isolate wheat D-genome-specific repetitive elements regardless of the level of methylation, by genomic subtraction. Total genomic DNA of Aegilops tauschii was cleaved into short fragments with a methylation-insensitive 4 bp cutter, Mbol, and then common DNA sequences between Ae. tauschii and Triticum turgidum were subtracted by annealing with excess T. turgidum genomic DNA. The D genome repetitive sequence pAt1 was isolated and used to identify an additional novel repetitive sequence family from wheat bacterial artificial chromosomes with a size range of 1 395-1 850 bp. The methods successfully led pathfinding of two unique repetitive families.  相似文献   

14.
Kinetic and chemical analysis show that the haploid genome of Leishmania donovani has between 4.6 and 6.5 X 10(7) Kb pairs of DNA. Cot analysis shows that the genome contains 12% rapidly reassociating DNA, U3% middle repetitive DNA with an average reiteration frequency of 77 and 62% single copy DNA. Saturation hybridization experiments show that 0.82% of the nuclear DNA is occupied by rRNA coding sequences. The average repetition frequency of these sequences is determined to be 166. Sedimentation velocity studies indicate the two major rRNA species have sedimentation values of 26S and 16S, respectively. The arrangement of the rRNA genes and their spacer sequences on long strands of purified rDNA has been determined by the examination of the structure of rRNA:DNA hybrids prepared for electron microscopy by the gene 32-ethidium bromide technique. Long DNA strands are observed to contain several gene sets (16S + 26S). One repeat unit contains the following sequences in the order given: (a) A 16S gene of length 2.12 Kb, (b) An internal transcribed spacer (Spl) of length 1.23 Kb, which contains a short sequence that may code for a 5.8S rRNA, (C) 26S gene with a length of 4.31 Kb which contains an internal gap region of length 0.581 Ib, (d) An external spacer of average length 5.85 Kb.  相似文献   

15.
Complete sequence and gene organization of the Nosema spodopterae rRNA gene   总被引:1,自引:0,他引:1  
By sequencing the entire ribosomal RNA (rRNA) gene of Nosema spodopterae, we show here that its gene organization follows a pattern similar to the Nosema type species, Nosema bombycis, i.e. 5'-large subunit rRNA (2,497 bp)-internal transcribed spacer (185 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (277 bp)-5S rRNA (114 bp)-3'. Gene sequences and the secondary structures of large subunit rRNA, small subunit rRNA, and 5S rRNA are compared with the known corresponding sequences and structures of closely related microsporidia. The results suggest that the Nosema genus may be heterogeneous and that the rRNA gene organization may be a useful characteristic for determining which species are closely related to the type species.  相似文献   

16.
Nucleotide sequences of two 5S rRNA genes located in repeated 327 bp long units were determined in diploid wheat Triticum monococcum. They were compared with sequences of 5S rRNA genes of Tr. monococcum and Tr. aestivum which were earlier determined. The differences were revealed in two localizations of the nucleotide sequence in 5S DNA coding regions of Tr. monococcum and - in nine localizations in nontranscribed spacer. It was established that the nucleotide sequence of 5S rRNA gene cloned in pTm5S9 plasmid and 5S DNA coding region in Tr. aestivum have significant homology. Diploid wheat Tr. monococcum was supposed to have 5S rRNA genes with different functional activity within one multigene family.  相似文献   

17.
18.
目的16SrRNA和16S-23SrRNA间区片段是常用细菌分类鉴定靶点,本研究探讨人工神经原网络(ANN)对上述位点PCR扩增产物数据分析在细菌快速鉴定方面的价值。方法2对15SrRNA基因荧光引物和1对16S-23SrRNA区间基因引物用于扩增血液标本中分离出的317株细菌。相关毛细管电泳(CE)限制性片段长度多态性(RFLP)和单链构象多态性(SSCP)数据进行人工神经原网络分析。结果16S-23SrRNA基因的RFLP数据对未知菌鉴定的准确率高于16SrRNA基因的SSCP数据,分别为98.0%和79.6%。结论实验证明了人工神经原网络作为一种模式识别方法对于简化细菌鉴定十分有价值。  相似文献   

19.
Borrelia Ir-5215, isolated from ticks Ixodes ricinus in Ukraine (the Crimean autonomous region), was identified by the method of the polymorphism of the fragment length of the restriction amplicon of rRNA spacer region 5S-23S. Its Msel-restriction profile was relatively similar to that of B. afzelii. The sequencing of spacer region rrf (5S)-rrl (23S) and 16S rRNA gene, as well as the analysis of the similarity of nucleotide sequences, obtained in the course of these study, revealed the differences between Borrelia sp, lr-5215 and six European species of Borrelia burgdorferi sensu lato and a high level of similarity (more than 95.1% for 5S-23S rRNA and 99.4% for 16S rRNA gene) to three known representatives of genome group A14S (Borrelia spp. A14S, I-77 and PC-Rq17). This suggests that isolated Borrelia lr-5215 is a new representative of pathogenic B. burgdorferi sensu lato genome group A14S, which is spread, together with Central Europe, also in southern Ukraine.  相似文献   

20.
Lyme disease is the most common vector-borne disease in the United States. The causative agent is the spirochete Borrelia burgdorferi. The copy number and organization of the genes encoding the rRNAs of this organism were determined. There is a single gene for 16S rRNA and two copies each of the 23S rRNA and 5S rRNA genes. All of the genes are located within a chromosomal fragment of approximately 9.5 to 10.0 kb. The 23S and 5S rRNA genes are tandemly duplicated in the order 23S-5S-23S-5S and are apparently not linked to the 16S rRNA gene, which is situated over 2 kb upstream from the 23S-5S duplication. The individual copies of the 23S-5S duplication are separated by a 182-bp spacer. Within each 23S-5S unit, an identical 22-bp spacer separates the 23S and 5S rRNA sequences from each other. The genome organization of the 23S-5S gene cluster in a number of different B. burgdorferi isolates obtained at a number of different geographical locations, as well as in several other species of Borrelia, was investigated. All isolates of B. burgdorferi tested displayed the tandem duplication, whereas the closely related species B. hermsii, B. anserina, and B. turicatae all contained a single copy of each of the genes. In addition, different geographical isolates of B. burgdorferi can be differentiated on the basis of a restriction fragment length polymorphism associated with the 23S-5S gene cluster. This polymorphism can be a useful tool for the determination of genetic relatedness between different isolates of B. burgdorferi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号