首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
arc5 is a chloroplast division mutant of Arabidopsis thaliana. To identify the role of ARC5 in the chloroplast replication process we have followed the changes in arc5 chloroplasts during their perturbed division. ARC5 does not affect proplastid division but functions at a later stage in chloroplast development. Chloroplasts in developing mesophyll cells of arc5 leaves do not increase in number and all of the chloroplasts in mature leaf cells show a central constriction. Young arc5 chloroplasts are capable of initiating the division process but fail to complete daughter-plastid separation. Wild-type plastids increase in number to a mean of 121 after completing the division process, but in the mutant arc5 the approximately 13 plastids per cell are still centrally constricted but much enlarged. As the arc5 chloroplasts expand and elongate without dividing, the internal thylakoid membrane structure becomes flexed into an undulating ribbon. We conclude that the ARC5 gene is necessary for the completion of the last stage of chloroplast division when the narrow isthmus breaks, causing the separation of the daughter plastids.  相似文献   

2.
Chloroplasts have evolved from a cyanobacterial endosymbiont and have been retained in eukaryotic cells for more than one billion years via chloroplast division and inheritance by daughter cells during cell division. Recent studies revealed that chloroplast division is performed by a large protein complex at the division site, encompassing both the inside and the outside of the two envelope membranes. The division complex has retained a few components of the cyanobacterial division complex to go along with other components supplied by the host cell. On the basis of the information about the division complex, we are beginning to understand how the division complex evolved, and how eukaryotic host cells regulate chloroplast division during proliferation and differentiation.  相似文献   

3.
Using cultured cells of the hornwortAnthoceros punctatus, the change in the relative chloroplast DNA content in each stage of chloroplast division was investigated to clarify the relationship between the division cycle of a chloroplast and a cell nucleus. Samples of cultured cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) and then observed with an epifluorescence microscope and a chromosome image analyzing system (CHIAS). A chloropiast in cultured cells duplicated DNA with an increase in size. When a chloroplast began to divide, it was constricted in the middle, taking a dumbbell shape, and then divided into two daughter chloroplasts. In cultured cells of this species, the pattern of quantitative change of chloroplast DNA, that is, the DNA replication pattern of chloroplasts, corresponded to that of cell nuclear DNA in mitosis.  相似文献   

4.
BACKGROUND: Chloroplast division in plant cells occurs by binary fission, yielding two daughter plastids of equal size. Previously, we reported that two Arabidopsis homologues of FtsZ, a bacterial protein that forms a cytokinetic ring during cell division, are essential for plastid division in plants, and may be involved in the formation of plastid-dividing rings on both the stromal and cytosolic surfaces of the chloroplast envelope membranes. In bacteria, positioning of the FtsZ ring at the center of the cell is mediated in part by the protein MinD. Here, we identified AtMinD1, an Arabidopsis homologue of MinD, and investigated whether positioning of the plastid-division apparatus at the plastid midpoint might involve a mechanism similar to that in bacteria. RESULTS: Sequence analysis and in vitro chloroplast import experiments indicated that AtMinD1 contains a transit peptide that targets it to the chloroplast. Transgenic Arabidopsis plants with reduced AtMinD1 expression exhibited variability in chloroplast size and number and asymmetrically constricted chloroplasts, strongly suggesting that the plastid-division machinery is misplaced. Overexpression of AtMinD1 inhibited chloroplast division. These phenotypes resemble those of bacterial mutants with altered minD expression. CONCLUSIONS: Placement of the plastid-division machinery at the organelle midpoint requires a plastid-targeted form of MinD. The results are consistent with a model whereby assembly of the division apparatus is initiated inside the chloroplast by the plastidic form of FtsZ, and suggest that positioning of the cytosolic components of the apparatus is specified by the position of the plastidic components.  相似文献   

5.
Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division, reminiscent of their free-living ancestor. However, chloroplasts can not divide by themselves, and the division is performed and controlled by proteins that are encoded by the host nucleus. The continuity of chloroplasts was originally established by synchronization of endosymbiotic cell division with host cell division, as seen in existent algae. In contrast, land plant cells contain multiple chloroplasts, the division of which is not synchronized, even in the same cell. Land plants have evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts (or other types of plastids) change along with their respective cellular function by changes in the division rate. We recently reported that PLASTID DIVISION (PDV) proteins, land-plant specific components of the chloroplast division apparatus, determined the rate of chloroplast division. The level of PDV protein is regulated by the cell differentiation program based on cytokinin, and the increase or decrease of the PDV level gives rise to an increase or decrease in the chloroplast division rate. Thus, the integration of PDV proteins into the chloroplast division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.Key words: chloroplast division, cell cycle, cell differentiation, cytokinin, endosymbiosis, evolution  相似文献   

6.
Maple J  Møller SG 《FEBS letters》2007,581(11):2162-2167
Chloroplasts still retain components of the bacterial cell division machinery and research over the past decade has led to an understanding of how these stromal division proteins assemble and function as a complex chloroplast division machinery. However, during evolution plant chloroplasts have acquired a number of cytosolic division proteins, indicating that unlike the cyanobacterial ancestors of plastids, chloroplast division in higher plants require a second division machinery located on the chloroplast outer envelope membrane. Here we review the current understanding of the stromal and cytosolic plastid division machineries and speculate how two protein machineries coordinate their activities across a double-membraned structure.  相似文献   

7.
The effects of light on both the division cycle of chloroplasts and the synthesis of chloroplast DNA were investigated in cultured discs taken from the distal end of 2-centimeter spinach (Spinacia oleracea) leaves. Comparisons were made of discs cultured for a maximum of 4 days in a shaking liquid medium under continuous white light, darkness, and of discs cultured for 1 day in light following 3 days in darkness. In continuous white light the shortest generation time of chloroplasts observed in this study was 19.4 hours and the duration of spherical, ovoid, and dumbbell-shaped stages in the division cycle were 13.4, 2.8, and 3.1 hours, respectively. In darkness the generation times of chloroplasts extended to 51.5 hours. Under these conditions the duration of spherical, ovoid, and dumbbell-shaped stages were 22.8, 8.4, and 20.2 hours, respectively, suggesting that in darkness the separation of dumbbell-shaped chloroplasts may be the rate limiting step. When discs cultured in the dark were transferred to light, most dumbbell-shaped chloroplasts separated into daughter chloroplasts in less than an hour. Measurements of chloroplast DNA established that the cellular level of chloroplast DNA increased 10-fold over the 4 days of culture in continuous white light. Comparisons of the plastids of dark and light grown discs showed that the synthesis of chloroplast DNA was enhanced by light. Observations of DAPI stained dividing chloroplasts indicate that DNA partitioning can take place during the final stage of chloroplast division and that it does not precede plastid division.  相似文献   

8.
Moss chloroplasts should prove useful for studying the cyanobacteria-derived system in chloroplasts. To determine the effects of antibiotics that inhibit bacterial peptidoglycan synthesis, the numbers of chloroplasts in treated Physcomitrella patens cells were counted. Ampicillin and D-cycloserine caused a rapid decrease in the number of chloroplasts per cell. Fosfomycin affected half of the cells, while vancomycin affected a few cells. Conversely, bacitracin had no effect. With the decrease in chloroplast number, macrochloroplasts appeared in antibiotic-treated cells. Removal of the antibiotics resulted in the recovery of chloroplast number, suggesting that the decrease in number was directly dependent on the antibiotic treatment. Microscopic observations showed that the decrease in the number of chloroplasts resulted from cell division without chloroplast division. These results suggest that enzymes derived from the bacterial peptidoglycan synthesis pathway are related to moss chloroplast division.  相似文献   

9.
Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum-strigosum-littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death.  相似文献   

10.
Summary The process of chloroplast division in young leaves of four species (bean, spinach, wheat, and maize) was investigated by light and electron microscopy. Two types of division, i.e., by fission, and by partition were observed.Chloroplast division by fission prevailed in the plant species examined, as shown by the relative abundance of dumbbell-shaped plastids, the characteristic stage in this type of division. Electron dense material, most commonly in the shape of a ring structure in the isthmus of the dividing plastid, was nearly always present in wheat and maize. Similar, but less distinct structures were usually observed in the neck region of constricted bean and spinach chloroplasts.Chloroplast division by partition was found in young leaf tissues of bean and spinach, but was not observed in wheat and maize. The main indication of this type of division is a centripetal invagination of the inner limiting membrane of the plastid envelope which progressively divides the chloroplast stroma into two, nearly equal, parts. Specific membraneous structures resembling myelin figures were usually found close to a dividing chloroplast and may participate in chloroplastokinesis.  相似文献   

11.
Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid division, and its leaf mesophyll cells contain only one or two grossly enlarged chloroplasts. We show here that arc6 chloroplasts also exhibit abnormal localization of the key plastid division proteins FtsZ1 and FtsZ2. Whereas in wild-type plants, the FtsZ proteins assemble into a ring at the plastid division site, chloroplasts in the arc6 mutant contain numerous short, disorganized FtsZ filament fragments. We identified the mutation in arc6 and show that the ARC6 gene encodes a chloroplast-targeted DnaJ-like protein localized to the plastid envelope membrane. An ARC6-green fluorescent protein fusion protein was localized to a ring at the center of the chloroplasts and rescued the chloroplast division defect in the arc6 mutant. The ARC6 gene product is related closely to Ftn2, a prokaryotic cell division protein unique to cyanobacteria. Based on the FtsZ filament morphology observed in the arc6 mutant and in plants that overexpress ARC6, we hypothesize that ARC6 functions in the assembly and/or stabilization of the plastid-dividing FtsZ ring. We also analyzed FtsZ localization patterns in transgenic plants in which plastid division was blocked by altered expression of the division site-determining factor AtMinD. Our results indicate that MinD and ARC6 act in opposite directions: ARC6 promotes and MinD inhibits FtsZ filament formation in the chloroplast.  相似文献   

12.
13.
We investigated the effects of drought stress on the ultrastructure of chloroplasts in rice plants. After the seedlings were grown in a glasshouse for 1 month, they were treated for drought stress using two methods. One drought treatment was imposed by reducing the water supply to the plants for 1 month. The other was imposed by withholding water for 2 weeks to examine the withering process of leaves by drought stress. The ultrastructural changes of chloroplasts in bundle sheath cells were more prominent than those in mesophyll cells under both drought stress treatments. Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) content in bundle sheath chloroplasts reduced more dramatically than in mesophyll chloroplasts by drought stress. Although a slight swelling of thylakoids was sometimes observed in bundle sheath chloroplasts in moderate stress for 1 month, the thylakoids were less affected by drought stress than chloroplast envelope. These results suggest that chloroplasts in bundle sheath cells were more sensitive to drought stress than those in mesophyll cells and the thylakoids were less damaged by drought stress compared with chloroplast envelope.  相似文献   

14.
J. Scott  Sharon Broadwater 《Protoplasma》1989,152(2-3):112-122
Summary Uniseriate filaments of the freshwater red algaCompsopogon coeruleus were examined by transmission electron microscopy for details of vegetative organization and cell division with the goal of providing useful taxonomic characters. Each cell's single, complex chloroplast contains a peripheral encircling thylakoid, and unlike the vast majority of red algae, the cis-regions of dictyosomes are not consistently juxtaposed with mitochondria. These subcellular features, which are present in all examined genera in theCompsopogonales, Erythropeltidales, andRhodochaetales, along with certain unique reproductive characteristics, unify these three orders. During mitosis in uncorticated axial cells, a small, ring-shaped nucleus associated organelle (NAO) is located at each division pole, an intranuclear spindle comes to a moderately acute focus at the flattened, fenestrated metaphase-anaphase division poles and perinuclear ER partially encloses dividing nuclei, including a well-developed interzonal midpiece. The cleavage furrow penetrates the large, central vacuolar region to separate daughter nuclei. These cell division features most closely resemble the pattern described for the orderCeramiales. Our observations of vegetative and dividing cells ofC. coeruleus supplement the growing volume of evidence in favour of uniting all red algae into a single class without subclass designations.Abbreviations ER endoplasmic reticulum - IZM interzonal midpiece - MT microtubule - MTOC microtubule organizing center - NAO nucleus associated organelle - NE nuclear envelope - PER perinuclear endoplasmic reticulum  相似文献   

15.
SYNOPSIS. Observations were made on the fine structure of Paramecium bursaria and its intracellular Chlorella symbionts. Emphasis was placed on the structure of the algae and structural aspects of the relationship between the organisms. The algae are surrounded by a prominent cell wall and contain a cup-shaped chloroplast which lies just beneath the plasma membrane. Within the cavity formed by the chloroplast are a large nucleus, a mitochondrion, one or more dictyosomes, and numerous ribosomes. The chloroplast itself is made up of a series of lamellar stacks each containing 2–6 or more thylakoids with a granular stroma and starch grains intercalated between the stacks. The thylakoid stacks of mature algae are frequently more compact than those of recently divided algae. A large pyrenoid is located within the base of the chloroplast. It is made up of a granular or fibrillar matrix surrounded by a shell of starch. The matrix is bisected by a stack of 2 thylakoids. Prior to the division of the chloroplast the pyrenoid regresses; pyrenoids subsequently form in the daughter chloroplasts thru condensation of the matrix material and the reappearance of a starch shell. This shell appears to be formed by the hollowing-out of starch grains already present in the chloroplast stroma. Accordingly, in this case, starch moves from the stroma to the pyrenoid. The algae are located thruout the peripheral cytoplasm of the Paramecium. Each alga is located in an individual vacuole except immediately following division of the algae when the daughter cells are temporarily located in the vacuole which harbored the parental cell. Shortly thereafter the vacuole membrane invaginates, thereby isolating the daughter algae into individual vacuoles. Degenerating symbiotic algae are seen; because these are frequently found in vacuoles with bacteria, they are presumed to be undergoing digestion. Due to the conditions of culture these algae could have been either of intracellular or extracellular origin.  相似文献   

16.
ARC (accumulation and replication of chloroplasts) genes control different aspects of the chloroplast division process in higher plants. In order to establish the hierarchy of the ARC genes in the chloroplast division process and to provide evidence for their specific roles, double mutants were constructed between arc11, arc6, arc5, arc3 and arc1 in all combinations and phenotypically analysed. arc11 is a new nuclear recessive mutant with 29 chloroplasts compared with 120 in wild type. All the phenotypes of the double mutants are unambiguous. ARC1 down-regulates proplastid division but is on a separate pathway from ARC3, ARC5, ARC6 and ARC11. ARC6 initiates both proplastid and chloroplast division. ARC3 controls the rate of chloroplast expansion and ARC11 the central positioning of the final division plane in chloroplast division. ARC5 facilitates separation of the two daughter chloroplasts. ARC5 maps to chromosome 3 and ARC11 and ARC6 map approximately 60 cM apart on chromosome 5.  相似文献   

17.

Background  

Reminiscent of their free-living cyanobacterial ancestor, chloroplasts proliferate by division coupled with the partition of nucleoids (DNA-protein complexes). Division of the chloroplast envelope membrane is performed by constriction of the ring structures at the division site. During division, nucleoids also change their shape and are distributed essentially equally to the daughter chloroplasts. Although several components of the envelope division machinery have been identified and characterized, little is known about the molecular components/mechanisms underlying the change of the nucleoid structure.  相似文献   

18.
A system of highly synchronized chloroplast divisions was developed in the unicellular red alga Cyanidioschyzon merolae De Luca, Taddei, & Varano. Chloroplast divisions were examined by epifluorescence microscopy following treatments with light and inhibitors. When the cells during stationary phase were transferred into a new medium under a 12:12 h LD cycle, chloroplasts, mitochondria, and cell nuclei divided synchronously in that order soon after the initiation of dark periods. More than 40% of the cells contained dividing chloroplasts. To obtain a system of highly synchronized cell division and chloroplast division, the cells synchronized by a 12:12 h LD cycle were treated with various inhibitors. Nocodazole and propyzamide did not affect cell and organelle divisions, whereas aphidicolin markedly inhibited cell-nuclear divisions and cytokinesis and induced a delay in chloroplast division. More than 80% of the cells contained dividing chloroplasts when cells synchronized by light were treated with aphidicolin for 12 h. This synchronized system will be useful for studies of the molecular and cellular mechanisms of organelle divisions .  相似文献   

19.
The chloroplast division machinery is composed of numerous proteins that assemble as a large complex to divide double‐membraned chloroplasts through binary fission. A key mediator of division‐complex formation is ARC6, a chloroplast inner envelope protein and evolutionary descendant of the cyanobacterial cell division protein Ftn2. ARC6 connects stromal and cytosolic contractile rings across the two membranes through interaction with an outer envelope protein within the intermembrane space (IMS). The ARC6 IMS region bears a structurally uncharacterized domain of unknown function, DUF4101, that is highly conserved among ARC6 and Ftn2 proteins. Here we report the crystal structure of this domain from Arabidopsis thaliana ARC6. The domain forms an α/β barrel open towards the outer envelope membrane but closed towards the inner envelope membrane. These findings provide new clues into how ARC6 and its homologs contribute to chloroplast and cyanobacterial cell division.  相似文献   

20.
BACKGROUND: Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS: DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS: We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号