首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oriented cell divisions in the extending germband of Drosophila   总被引:1,自引:0,他引:1  
Tissue elongation is a general feature of morphogenesis. One example is the extension of the germband, which occurs during early embryogenesis in Drosophila. In the anterior part of the embryo, elongation follows from a process of cell intercalation. In this study, we follow cell behaviour at the posterior of the extending germband. We find that, in this region, cell divisions are mostly oriented longitudinally during the fast phase of elongation. Inhibiting cell divisions prevents longitudinal deformation of the posterior region and leads to an overall reduction in the rate and extent of elongation. Thus, as in zebrafish embryos, cell intercalation and oriented cell division together contribute to tissue elongation. We also show that the proportion of longitudinal divisions is reduced when segmental patterning is compromised, as, for example, in even skipped (eve) mutants. Because polarised cell intercalation at the anterior germband also requires segmental patterning, a common polarising cue might be used for both processes. Even though, in fish embryos, both mechanisms require the classical planar cell polarity (PCP) pathway, germband extension and oriented cell divisions proceed normally in embryos lacking dishevelled (dsh), a key component of the PCP pathway. An alternative means of planar polarisation must therefore be at work in the embryonic epidermis.  相似文献   

3.
4.
5.
Insects such as Drosophila melanogaster undergo a derived form of segmentation termed long germband segmentation. In long germband insects, all of the body regions are specified by the blastoderm stage. Thus, the entire body plan is proportionally represented on the blastoderm. This is in contrast to short and intermediate germband insects where only the most anterior body regions are specified by the blastoderm stage. Posterior segments are specified later in embryogenesis during a period of germband elongation. Although we know much about Drosophila segmentation, we still know very little about how the blastoderm of short and intermediate germband insects is allocated into only the anterior segments, and how the remaining posterior segments are produced. In order to gain insight into this type of embryogenesis, we have investigated the expression and function of the homolog of the Drosophila gap gene hunchback in an intermediate germ insect, the milkweed bug, Oncopeltus fasciatus. We find that Oncopeltus hunchback (Of'hb) is expressed in two phases, first in a gap-like domain in the blastoderm and later in the posterior growth zone during germband elongation. In order to determine the genetic function of Of'hb, we have developed a method of parental RNAi in the milkweed bug. Using this technique, we find that Oncopeltus hunchback has two roles in anterior-posterior axis specification. First, Of'hb is required to suppress abdominal identity in the gnathal and thoracic regions. Subsequently, it is then required for proper germband growth and segmentation. In milkweed bug embryos depleted for hunchback, these two effects result in animals in which a relatively normal head is followed by several segments with abdominal identity. This phenotype is reminiscent to that found in Drosophila hunchback mutants, but in Oncopeltus is generated through the combination of the two separate defects.  相似文献   

6.
7.
wingless, a segment polarity gene required in every segment for the normal development of the Drosophila embryo, encodes a cysteine-rich protein with a signal peptide. A polyclonal antiserum localizes the wingless protein in approximately the same region of the embryo as the wingless mRNA. The pattern of antigen localization changes rapidly during development. In the extended germband stage, stripes of wingless staining are present in the trunk region just anterior to the parasegment boundary; wingless-expressing cells abut engrailed-expressing cells across that boundary. wingless antigen is seen both inside and outside the cell by electron microscopy: inside the cell, in small membrane-bound vesicles and in multivesicular bodies; outside the cell, close to or on the plasma membrane and associated with material in the intercellular space. The multivesicular bodies containing the wingless protein are occasionally found in engrailed-positive cells, suggesting that the wingless protein behaves as a paracrine signal.  相似文献   

8.
Segment formation is critical to arthropod development, yet there is still relatively little known about this process in most arthropods. Here, we present the expression patterns of the genes even-skipped (eve), engrailed, and wingless in a centipede, Lithobius atkinsoni. Despite some differences when compared with the patterns in insects and crustaceans, the expression of these genes in the centipede suggests that their basic roles are conserved across the mandibulate arthropods. For example, unlike the seven pair-rule stripes of eve expression in the Drosophila embryonic germband, the centipede eve gene is expressed strongly in the posterior of the embryo, and in only a few stripes between newly formed segments. Nonetheless, this pattern likely reflects a conserved role for eve in the process of segment formation, within the different context of a short-germband mode of embryonic development. In the centipede, the genes wingless and engrailed are expressed in stripes along the middle and posterior of each segment, respectively, similar to their expression in Drosophila. The adjacent expression of the engrailed and wingless stripes suggests that the regulatory relationship between the two genes may be conserved in the centipede, and thus this pathway may be a fundamental mechanism of segmental development in most arthropods.  相似文献   

9.
Multiple proteins interact with the fushi tarazu proximal enhancer.   总被引:5,自引:1,他引:4       下载免费PDF全文
W Han  Y Yu  N Altan    L Pick 《Molecular and cellular biology》1993,13(9):5549-5559
  相似文献   

10.
11.
C Murre  P S McCaw  D Baltimore 《Cell》1989,56(5):777-783
Two cDNAs were isolated whose dimerized products bind specifically to a DNA sequence, kappa E2, located in the immunoglobulin kappa chain enhancer. Both cDNAs share a region of extensive identity to the Drosophila daughterless gene and obvious similarity to a segment in three myc proteins, MyoD, and members of the Drosophila achaete-scute and twist gene family. The homologous regions have the potential to form two amphipathic helices separated by an intervening loop. Remarkable is the stringent conservation of hydrophobic residues present in both helices. We demonstrate that this new motif plays a crucial role in both dimerization and DNA binding.  相似文献   

12.
13.
Regulation and function of the Drosophila segmentation gene fushi tarazu   总被引:68,自引:0,他引:68  
Y Hiromi  W J Gehring 《Cell》1987,50(6):963-974
The Drosophila segmentation gene fushi tarazu (ftz) is expressed in a pattern of seven stripes at the blastoderm stage. Two cis-acting control elements are required for this expression: the zebra element, which confers the striped pattern by mediating the effects of a subset of segmentation genes; and the upstream element, an enhancer element requiring ftz+ activity for its action. Fusion of the upstream element to a basal promoter results in activation of the heterologous promoter in a ftz-dependent striped pattern, supporting the idea that ftz regulates itself by acting through its enhancer. The upstream element can also confer expression patterns similar to that of the homeotic gene Antennapedia, suggesting that a similar element may play a role in the activation of Antennapedia.  相似文献   

14.
In short and intermediate germ insects, only the anterior segments are specified during the blastoderm stage, leaving the posterior segments to be specified later, during embryogenesis, which differs from the segmentation process in Drosophila, a long germ insect. To elucidate the segmentation mechanisms of short and intermediate germ insects, we have investigated the orthologs of the Drosophila segmentation genes in a phylogenetically basal, intermediate germ insect, Gryllus bimaculatus (Gb). Here, we have focused on its hunchback ortholog (Gb'hb), because Drosophila hb functions as a gap gene during anterior segmentation, referred as a canonical function. Gb'hb is expressed in a gap pattern during the early stages of embryogenesis, and later in the posterior growth zone. By means of embryonic and parental RNA interference for Gb'hb, we found the following: (1) Gb'hb regulates Hox gene expression to specify regional identity in the anterior region, as observed in Drosophila and Oncopeltus; (2) Gb'hb controls germband morphogenesis and segmentation of the anterior region, probably through the pair-rule gene, even-skipped at least; (3) Gb'hb may act as a gap gene in a limited region between the posterior of the prothoracic segment and the anterior of the mesothoracic segment; and (4) Gb'hb is involved in the formation of at least seven abdominal segments, probably through its expression in the posterior growth zone, which is not conserved in Drosophila. These findings suggest that Gb'hb functions in a non-canonical manner in segment patterning. A comparison of our results with the results for other derived species revealed that the canonical hb function may have evolved from the non-canonical hb functions during evolution.  相似文献   

15.
16.
Exopolygalacturonase (exo-PGase, EC 3.2.1.67) attacks the non-reducing terminus of the polygalacturonic acid in pectic molecules, releasing galacturonic acid. We cloned the cDNA of exo-PGase purified from cell homogenates of suspension-cultured carrot ( Daucus carota L. cv. Kintoki) cells. The nucleotide sequence of the cDNA (1.4 kb) contains an open reading frame that encodes a 391-amino-acid polypeptide. Sequence homology research showed 97.9% identity to the glycoprotein EP4 obtained from cultured carrot cells and 49.3% identity to the ENOD8 gene product of alfalfa ( Medicago sativa). However, no significant similarity was found to known PGases. The Southern hybridization pattern indicated that this exo-PGase protein is a member of a small-sized gene family. Predominant expression of the exo-PGase gene was detected by in situ hybridization and immunohistochemistry in the root apical meristem and in the elongation region, but not in the root cap. A cross-immunoresponse with anti-exo-PGase also occurred in the root nodule meristem of alfalfa. These results suggest that this exo-PGase plays a role in the degradation of pectic molecules during root development.  相似文献   

17.
18.
19.
20.
Segmentation in long germband insects such as Drosophila occurs essentially simultaneously across the entire body. A cascade of segmentation genes patterns the embryo along its anterior-posterior axis via subdivision of the blastoderm. This is in contrast to short and intermediate germband modes of segmentation where the anterior segments are formed during the blastoderm stage and the remaining posterior segments arise at later stages from a posterior growth zone. The biphasic character of segment generation in short and intermediate germ insects implies that different formative mechanisms may be operating in blastoderm-derived and germband-derived segments. In Drosophila, the gap gene Krüppel is required for proper formation of the central portion of the embryo. This domain of Krüppel activity in Drosophila corresponds to a region that in short and intermediate germband insects spans both blastoderm and germband-derived segments. We have cloned the Krüppel homolog from the milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaeidae), an intermediate germband insect. We find that Oncopeltus Krüppel is expressed in a gap-like domain in the thorax during the blastoderm and germband stages of embryogenesis. In order to investigate the function of Krüppel in Oncopeltus segmentation, we generated knockdown phenotypes using RNAi. Loss of Krüppel activity in Oncopeltus results in a large gap phenotype, with loss of the mesothoracic through fourth abdominal segments. Additionally, we find that Krüppel is required to suppress both anterior and posterior Hox gene expression in the central portion of the germband. Our results show that Krüppel is required for both blastoderm-derived and germband-derived segments and indicate that Krüppel function is largely conserved in Oncopeltus and Drosophila despite their divergent embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号