首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neural basis of episodic memory: evidence from functional neuroimaging   总被引:11,自引:0,他引:11  
We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task.  相似文献   

2.
Working memory and executive function: evidence from neuroimaging   总被引:12,自引:0,他引:12  
Traditional theories of working memory and executive function, when mapped in straightforward ways into the neural domain, yield predictions that are only partly supported by the recent neuroimaging studies. Neuroimaging studies suggest that some constituent functions, such as maintaining information in active form and manipulating it, are not discretely localized in prefrontal regions. Some hypothesized executive processes, such as goal management, have effects in several cortical regions, including posterior regions. Such results suggest a more dynamic and distributed view of the cortical organization of working memory and executive functions.  相似文献   

3.
With the development of functional neuroimaging tools, the past two decades have witnessed an explosion of work examining functional brain maps, mostly in the adult brain. Against this backdrop of work in adults, developmental research begins to gather a substantial body of knowledge about brain maturation. The purpose of this review is to present some of these findings from the perspective of functional neuroimaging. First, a brief survey of available neuroimaging techniques (i.e., fMRI, MRS, MEG, PET, SPECT, and infrared techniques) is provided. Next, the key cognitive, emotional, and social changes taking place during adolescence are outlined. The third section gives examples of how these behavioral changes can be understood from a neuroscience perspective. The conclusion places this functional neuroimaging research in relation to clinical and molecular work, and shows how answers will ultimately come from the combined efforts of these disciplines.  相似文献   

4.
Cognitive neuroscience approaches to memory attempt to elucidate the brain processes and systems that are involved in different forms of memory and learning. This paper examines recent research from brain-damaged patients and neuroimaging studies that bears on the distinction between explicit and implicit forms of memory. Explicit memory refers to conscious recollection of previous experiences, whereas implicit memory refers to the non-conscious effects of past experiences on subsequent performance and behaviour. Converging evidence suggests that an implicit form of memory known as priming is associated with changes in posterior cortical regions that are involved in perceptual processing; some of the same regions may contribute to explicit memory. The hippocampal formation and prefrontal cortex also play important roles in explicit memory. Evidence is presented from recent PET scanning studies that suggests that frontal regions are associated with intentional strategic efforts to retrieve recent experiences, whereas the hippocampal formation is associated with some aspect of the actual recollection of an event.  相似文献   

5.
Cognitive theory has decomposed human mental abilities into cognitive (sub) systems, and cognitive neuroscience succeeded in disclosing a host of relationships between cognitive systems and specific structures of the human brain. However, an explanation of why specific functions are located in specific brain loci had still been missing, along with a neurobiological model that makes concrete the neuronal circuits that carry thoughts and meaning. Brain theory, in particular the Hebb-inspired neurocybernetic proposals by Braitenberg, now offers an avenue toward explaining brain–mind relationships and to spell out cognition in terms of neuron circuits in a neuromechanistic sense. Central to this endeavor is the theoretical construct of an elementary functional neuronal unit above the level of individual neurons and below that of whole brain areas and systems: the distributed neuronal assembly (DNA) or thought circuit (TC). It is shown that DNA/TC theory of cognition offers an integrated explanatory perspective on brain mechanisms of perception, action, language, attention, memory, decision and conceptual thought. We argue that DNAs carry all of these functions and that their inner structure (e.g., core and halo subcomponents), and their functional activation dynamics (e.g., ignition and reverberation processes) answer crucial localist questions, such as why memory and decisions draw on prefrontal areas although memory formation is normally driven by information in the senses and in the motor system. We suggest that the ability of building DNAs/TCs spread out over different cortical areas is the key mechanism for a range of specifically human sensorimotor, linguistic and conceptual capacities and that the cell assembly mechanism of overlap reduction is crucial for differentiating a vocabulary of actions, symbols and concepts.  相似文献   

6.
Reorganisation of cerebral representations has been hypothesised to underlie the recovery from ischaemic brain infarction. The mechanisms can be investigated non-invasively in the human brain using functional neuroimaging and transcranial magnetic stimulation (TMS). Functional neuroimaging showed that reorganisation is a dynamic process beginning after stroke manifestation. In the acute stage, the mismatch between a large perfusion deficit and a smaller area with impaired water diffusion signifies the brain tissue that potentially enables recovery subsequent to early reperfusion as in thrombolysis. Single-pulse TMS showed that the integrity of the cortico-spinal tract system was critical for motor recovery within the first four weeks, irrespective of a concomitant affection of the somatosensory system. Follow-up studies over several months revealed that ischaemia results in atrophy of brain tissue adjacent to and of brain areas remote from the infarct lesion. In patients with hemiparetic stroke activation of premotor cortical areas in both cerebral hemispheres was found to underlie recovery of finger movements with the affected hand. Paired-pulse TMS showed regression of perilesional inhibition as well as intracortical disinhibition of the motor cortex contralateral to the infarction as mechanisms related to recovery. Training strategies can employ post-lesional brain plasticity resulting in enhanced perilesional activations and modulation of large-scale bihemispheric circuits.  相似文献   

7.
A recent review of neuroimaging data on time measurement argued that the brain activity seen in association with timing is not influenced by specific characteristics of the task performed. In contrast, we argue that careful analysis of this literature provides evidence for separate neural timing systems associated with opposing task characteristics. The 'automatic' system draws mainly upon motor circuits and the 'cognitively controlled' system depends upon prefrontal and parietal regions.  相似文献   

8.
Deception remains a hotly debated topic in evolutionary and behavioural research. Our understanding of what impedes or facilitates the use and detection of deceptive signals in humans is still largely limited to studies of verbal deception under laboratory conditions. Recent theoretical models of non-human behaviour have suggested that the potential outcome for deceivers and the ability of receivers to discriminate signals can effectively maintain their honesty. In this paper, we empirically test these predictions in a real-world case of human deception, simulation in soccer. In support of theoretical predictions in signalling theory, we show that cost-free deceit by soccer players decreases as the potential outcome for the signaller becomes more costly. We further show that the ability of receivers (referees) to detect deceptive signals may limit the prevalence of deception by soccer players. Our study provides empirical support to recent theoretical models in signalling theory, and identifies conditions that may facilitate human deception and hinder its detection.  相似文献   

9.
In this paper we present a novel theory of the cognitive and neural processes by which adults learn new spoken words. This proposal builds on neurocomputational accounts of lexical processing and spoken word recognition and complementary learning systems (CLS) models of memory. We review evidence from behavioural studies of word learning that, consistent with the CLS account, show two stages of lexical acquisition: rapid initial familiarization followed by slow lexical consolidation. These stages map broadly onto two systems involved in different aspects of word learning: (i) rapid, initial acquisition supported by medial temporal and hippocampal learning, (ii) slower neocortical learning achieved by offline consolidation of previously acquired information. We review behavioural and neuroscientific evidence consistent with this account, including a meta-analysis of PET and functional Magnetic Resonance Imaging (fMRI) studies that contrast responses to spoken words and pseudowords. From this meta-analysis we derive predictions for the location and direction of cortical response changes following familiarization with pseudowords. This allows us to assess evidence for learning-induced changes that convert pseudoword responses into real word responses. Results provide unique support for the CLS account since hippocampal responses change during initial learning, whereas cortical responses to pseudowords only become word-like if overnight consolidation follows initial learning.  相似文献   

10.
Measurements of human brain function in children are of increasing interest in cognitive neuroscience. Many techniques for brain mapping used in children, including functional near-infrared spectroscopy (fNIRS), electroencephalography (EEG), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS), use probes placed on or near the scalp. The distance between the scalp and the brain is a key variable for these techniques because optical, electrical and magnetic signals are attenuated by distance. However, little is known about how scalp-brain distance differs between different cortical regions in children or how it changes with development. We investigated scalp-brain distance in 71 children, from newborn to age 12 years, using structural T1-weighted MRI scans of the whole head. Three-dimensional reconstructions were created from the scalp surface to allow for accurate calculation of brain-scalp distance. Nine brain landmarks in different cortical regions were manually selected in each subject based on the published fNIRS literature. Significant effects were found for age, cortical region and hemisphere. Brain-scalp distances were lowest in young children, and increased with age to up to double the newborn distance. There were also dramatic differences between brain regions, with up to 50% differences between landmarks. In frontal and temporal regions, scalp-brain distances were significantly greater in the right hemisphere than in the left hemisphere. The largest contributors to developmental changes in brain-scalp distance were increases in the corticospinal fluid (CSF) and inner table of the cranium. These results have important implications for functional imaging studies of children: age and brain-region related differences in fNIRS signals could be due to the confounding factor of brain-scalp distance and not true differences in brain activity.  相似文献   

11.
Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) can be used to isolate an evoked response to a stimulus from significant background physiological fluctuations. Data analysis approaches typically use averaging or linear regression to remove this physiological baseline with varying degrees of success. Biophysical model-based analysis of the functional hemodynamic response has also been advanced previously with the Balloon and Windkessel models. In the present work, a biophysical model of systemic and cerebral circulation and gas exchange is applied to resting state NIRS neuroimaging data from 10 human subjects. The model further includes dynamic cerebral autoregulation, which modulates the cerebral arteriole compliance to control cerebral blood flow. This biophysical model allows for prediction, from noninvasive blood pressure measurements, of the background hemodynamic fluctuations in the systemic and cerebral circulations. Significantly higher correlations with the NIRS data were found using the biophysical model predictions compared to blood pressure regression and compared to transfer function analysis (multifactor ANOVA, p < 0.0001). This finding supports the further development and use of biophysical models for removing baseline activity in functional neuroimaging analysis. Future extensions of this work could model changes in cerebrovascular physiology that occur during development, aging, and disease.  相似文献   

12.
This article provides an overview of recent research on human planning and problem solving. As an introduction, these two cognitive domains will be described and discussed from the perspective of experimental and cognitive psychology. The following sections will focus on the role of the prefrontal cortex in planning and problem solving and on disorders of these functions in patients with frontal-lobe lesions. Specific emphasis will be placed on the Tower of London task, a well established and widely used neuropsychological test of planning ability. We will present an overview of recent behavioural and neuroimaging studies that have employed the Tower of London task to draw specific conclusions about the likely neural and cognitive basis of planning function. Finally, we turn to a number of new directions and recent studies exploring different aspects of planning and problem solving and their association to related cognitive dimensions.  相似文献   

13.
《Bio Systems》2008,91(3):750-768
This paper proposes a human mimetic neuro-musculo-skeletal model to simulate the recovery reactions from perturbations during walking. The computational model incorporates nonlinear viscoelastic muscular mechanics, supraspinal control of the center-of-mass, spinal pattern generator including muscle synergy network, spinal reflexes, and long-loop reflexes. Especially the long-loop reflexes specify recovery strategies based on the experimental observations [Schillings, A.M., van Wezel, B.M.H., Mulder, T.H., Duysen, J., 2000. Muscular responses and movement strategies during stumbling over obstacles. J. Neurophysiol. 83, 2093–2102; Eng, J.J., Winter, D.A., Patla, A.E., 1994. Strategies for recovery from a trip in early and late swing during human walking. Exp. Brain Res. 102, 339–349]. The model demonstrates two typical recovery strategies, i.e., elevating and lowering strategies against pulling over a swing leg. Sensed perturbation triggers a simple tonic pulse from the cortex. Depending on the swing phase, the tonic pulse activates a different compound of muscles over lower limbs. The compound induces corresponding recovery strategies. The reproduction of principal recovery behaviors may support the model's proposed functional and/or anatomical correspondence.  相似文献   

14.
15.
The rapid growth of the literature on neuroimaging in humans has led to major advances in our understanding of human brain function but has also made it increasingly difficult to aggregate and synthesize neuroimaging findings. Here we describe and validate an automated brain-mapping framework that uses text-mining, meta-analysis and machine-learning techniques to generate a large database of mappings between neural and cognitive states. We show that our approach can be used to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature and support accurate 'decoding' of broad cognitive states from brain activity in both entire studies and individual human subjects. Collectively, our results have validated a powerful and generative framework for synthesizing human neuroimaging data on an unprecedented scale.  相似文献   

16.
Jo S 《Bio Systems》2007,90(3):750-768
This paper proposes a human mimetic neuro-musculo-skeletal model to simulate the recovery reactions from perturbations during walking. The computational model incorporates nonlinear viscoelastic muscular mechanics, supraspinal control of the center-of-mass, spinal pattern generator including muscle synergy network, spinal reflexes, and long-loop reflexes. Especially the long-loop reflexes specify recovery strategies based on the experimental observations [Schillings, A.M., van Wezel, B.M.H., Mulder, T.H., Duysen, J., 2000. Muscular responses and movement strategies during stumbling over obstacles. J. Neurophysiol. 83, 2093–2102; Eng, J.J., Winter, D.A., Patla, A.E., 1994. Strategies for recovery from a trip in early and late swing during human walking. Exp. Brain Res. 102, 339–349]. The model demonstrates two typical recovery strategies, i.e., elevating and lowering strategies against pulling over a swing leg. Sensed perturbation triggers a simple tonic pulse from the cortex. Depending on the swing phase, the tonic pulse activates a different compound of muscles over lower limbs. The compound induces corresponding recovery strategies. The reproduction of principal recovery behaviors may support the model's proposed functional and/or anatomical correspondence.  相似文献   

17.
18.
19.
Breast cancer treatment can induce alterations in blood- and neuroimaging-based markers. However, an overview of the predictive value of these markers for cognition is lacking for breast cancer survivors.This systematic review summarized studies of the last decade, using the PubMed database, evaluating blood markers, and the association between blood- or structural neuroimaging markers and cognition across the chemotherapy trajectory for primary breast cancer, following PRISMA guidelines.Forty-four studies were included. Differences were observed in all blood marker categories, from on-therapy until years post-chemotherapy. Associations were found between cognitive functioning and (1) blood markers (mainly inflammation-related) during, shortly-, or years post-chemotherapy and (2) white and gray matter metrics in frontal, temporal and parietal brain regions months up until years post-chemotherapy. Preliminary evidence exists for epigenetic and metabolic changes being associated with cognition, only after chemotherapy.This review demonstrated time-dependent associations between specific blood-based and structural neuroimaging markers with cognitive impairment in patients with breast cancer. Future studies are encouraged to include both neuroimaging- and blood markers (e.g. of neuronal integrity, epigenetics and metabolism) to predict long-term cognitive effects of chemotherapy.  相似文献   

20.
Deception, a basic and pervasive biological phenomenon, takes many forms, variously referred to as mimicry, trickery, seduction, pretense, feigning, masquerading, impersonation, distraction, or false promises, and these share certain common distinguishing behavioral elements that permit them to be classified into categories. A symbolic language for the codification and analysis of behavioral contingencies shows that all instances of deception are based on a misperception, misprediction, non-perception, or non-prediction by the deceived party, and can be further categorized based on features of the contingencies that define them. Instances of particular interest are those in which a deceiving party predicts (and in that sense “intends”) the deception. In those instances, the effect of the deception is usually to the deceiving party's benefit and to the deceived party's detriment.In economics, finance, business, military operations, public affairs, education, and everyday social interaction, deception takes numerous forms. Special forms, usually involving obfuscation, concealment, counterfeiting, and misrepresentation, occur in certain prevalent types of property transfer, including securitization, the creation of derivatives, and various types of Ponzi schemes. Such property transfers tend to be driven by opportunities for deception. They all involve blurring and clouding of the contingencies that defined the transferred properties, thus permitting their obfuscation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号