首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effect of light on the activity of phospholipase D (PLD) in oat (Avena sativa L.) seedlings and the dependence of this enzyme activity on the regime of their illumination were studied. The PLD activity in etiolated seedlings was 1.5–2.0-fold higher than in green plants. The illumination of etiolated seedlings with white light resulted in a decrease in PLD activity to its level in the seedlings grown under light. In contrast, the transfer of green seedlings to darkness enhanced the activity of the enzyme up to its level in etiolated seedlings. The illumination of etiolated seedlings with red light inhibited the PLD as well. It was shown that this photoeffect decreased with seedling aging and correlated with a phytochrome content in plants. Far-red light reversed the effect of red light. The involvement of phytochrome in the control of the PLD activity is discussed.  相似文献   

2.
Phospholipase D (PLD) activity was found to be higher in etiolated oat seedlings than in green seedlings. White and red (R) light exposure inhibited PLD activity in etiolated seedlings. Far-red light eliminated R-light-induced decrease in PLD activity, indicating phytochrome participation in observed photomodulation. Inhibitor of electron transport in chloroplast 3-(3,4-dichlorophenyl)-1,1-dimethylurea stimulated and glucose suppressed PLD activity in green and etiolated oat seedlings, respectively. These results suggest that PLD activity in oat seedling is regulated by light with involvement of phytochrome photoreceptor, and associated with photosynthesis process.  相似文献   

3.
The effect of red and white light on ethylene production was investigated in several plant species. In most cases light inhibited ethylene production. However, stimulation or no effect were also observed in a few species. In those plants where light inhibited ethylene synthesis, the effect of red light was much stronger than that of white light.Both red and white light inhibited ethylene production in green and etiolated seedlings and green leaves of Impatiens balsamina L. The inhibitory effect of red light was stronger than that of white light and much more pronounced when the plants were pretreated with ACC. The effect of red light could be reversed by far-red light. These results suggest that light affects the ethylene forming enzyme (EFE) activity and that its action is mediated by phytochrome.  相似文献   

4.
7-d-old etiolated and green barley seedlings (Hordeum vulgare L. cv. Alfa) were irradiated with UV-B for 30 min and then kept for 24 h in light or darkness. Chlorophyll (Chl) synthesis was inhibited by about 30 % as a result of UV-B irradiation, but there were no significant changes in photochemical activity measured by variable to maximum fluorescence ratio (Fv/Fm), quantum yield (ΦPS2) and oxygen evolution rate. Electron transport of etiolated seedlings was similar to that of green ones, nevertheless, the Chl content was more then 2-fold lower. Ribulose-1,5-bisphosphate carboxylase/oxygenase large and small subunits were diminished as a result of UV-B irradiation in etiolated and green plants, especially in those kept in the darkness. Catalase activity decreased and total superoxide dismutase activity increased in green and etiolated plants following UV-B treatment. When benzidine was used as a substrate, an isoform located between guaiacol peroxidases 2 and 3 (guaiacol peroxidase X) appeared, which was specific for UV-B treatment. As a result of irradiation, the contents of UV-B absorbing and UV-B induced compounds increased in green seedlings but not in etiolated seedlings.  相似文献   

5.
At a concentration of 17 µmol·L–1, paclobutrazol (PP), a triazole plant growth retardant, effectively reduced the elongation and increased the thickness of hypocotyls in 6-day-old Phaseolus vulgaris L. cv. Juliska seedlings, both in the light and in the dark. PP treatment did not increase the cell number in transverse sections of hypocotyls. The diameter of hypocotyls was uniform from the zone of intensive elongation along the whole hypocotyl in etiolated plants, but those grown in the light exhibited an additional lateral expansion at the base. Ethylene evolution was not reduced by PP in etiolated hypocotyls, and did not differ significantly in the elongating apical and fully grown basal zones. PP reduced the ethylene release by the growing zones in green hypocotyls, but not in the basal parts, which resulted in an increasing ethylene gradient towards the hypocotyl base. The level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was much higher in retardant-treated hypocotyls than in the controls, which was due in part to the reduced malonylation. The swelling of the hypocotyl bases could be eliminated by inhibitors of ethylene biosynthesis or action, or could be induced by 10 µmol·L–1ACC in control plants in the light. None of these treatments had a significant effect on the lateral expansion of hypocotyls in etiolated seedlings. PP treatment induced a similar effect to that of white light in etiolated seedlings, and amplified the effect of light in green plants with respect to the ACC distribution, and consequently, the ethylene production in the hypocotyls of 6-day-old bean seedlings. It can be concluded that the lateral expansion of hypocotyl bases in PP-treated green plants is controlled by ethylene.  相似文献   

6.
7.
Leaves of Pennisetum [Pennisetum glaucum (L) HHB 67] seedlings contained two isozymes of glutamine synthetase (GS, EC 6.3.1.2): cytosolic GS1 and chloroplastic GS2. Leaves of seedlings grown in light for seven days contained about twofold higher GS activity than etiolated leaves. In both light and dark grown seedlings, total GS, GS1 and GS2 activity declined with plant age with more pronounced effect in leaves of etiolated seedlings, and GS2 declined at a much faster rate than GS1. Exposure of etiolated seedlings to light markedly enhanced GS1 and GS2 activity. This increase in activity was not affected by cycloheximide, precluding light dependent de novo synthesis of the enzyme. Treatment of etiolated seedlings with photosynthetic inhibitor, dichlorophenyl dimethyl urea (DCMU) inhibited light dependent appearance of GS. Exogenous supply of sucrose to dark grown seedlings greatly increased the GS activity in dark. These results suggest that light-mediated stimulation in activity of GS in Pennisetum leaves is dependent on photosynthetic reaction.  相似文献   

8.
The contents of chlorophylls, carotenoids, flavonoids and phytohormones (IAA, ABA and other inhibitors) were determined in green and albino seedlings of cotton (Gossypium hirsutum L.) and pea (Pisum sativum L.) The growth of green and albino seedlings during 1 –2 weeks was similar. The green and albino seedlings do not differ remarkably in phytohormonal content and in the flavonoid concentration. In the etiolated seedlings of green and albino forms the content of flavonoids was rather decreased.  相似文献   

9.
1. In rice seedlings synthesis of methyl viologen-nitrite reductase was stimulated by light, as was that of NADH-nitrate oxidoreductase (EC 1.6.6.1). A small residual effect of light on the synthesis of the enzymes persisted in the dark for a short time. 2. In etiolated seedlings exposed to light and nitrate, a lag period of 3h was necessary before enzyme synthesis commenced, whereas in green seedlings kept in the dark for 36h, synthesis of both the enzymes started as soon as light and nitrate were provided. 3. Experiments with cycloheximide suggested that fresh protein synthesis in light was necessary for formation of active enzymes. Mere activation by light of inactive enzymes or their precursors, was not involved. 4. In green seedlings synthesis of nitrite reductase was more sensitive to chloramphenicol than that of nitrate reductase. In chloramphenicol-treated etiolated seedlings, however, synthesis of both the enzymes was inhibited to the same extent on subsequent light-treatment. 5. A close correlation was observed between inhibition of the Hill reaction by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and simazin [2-chloro-4,6-bis(ethylamino)-s-triazine] (at high concentration) and the inhibition of enzyme synthesis. At lower concentrations, however, simazin stimulated nitrate reductase. 6. In a single leaf synthesis of enzymes was observed only in portions exposed to light, whereas little activity was present in the dark covered part. 7. CO(2) deprivation severely inhibited the synthesis of enzymes in the light. Sucrose could not reverse this effect. 8. In excised embryos cultured in synthetic media containing sucrose, light was also essential for enzyme formation. 9. It is suggested that redox changes taking place in the green tissues as a result of the Hill reaction create conditions favourable for the induced synthesis of nitrate reductase and nitrite reductase.  相似文献   

10.
The activity of acetylcholinesterase (AChE) isolated from coleoptiles of etiolated oat seedlings is strongly inhibited by neostigmine and less so by eserine. The optimum of the enzyme activity occurs at pH 7.2 and a temperature of + 36 °C. The enzyme Michaelis constant is 280 μM. Choline within the range of concentration from 0.001 to 10 mM does not affect the enzyme activity. Calcium ions at 5 mM concentration cause inhibition, while magnesium and manganese ions do not affect the enzyme activity. AChE isolated from oat seedlings differs in a number of properties from AChE occurring in the tissues of other plants. This research was supported in part by grant CPBP 05.02.4.07.  相似文献   

11.
Summary The presence of multiple molecular forms (MMF) of glutamine synthetase (GS) has been studied in pumpkin plants and in cotyledons of bean plants. Two MMF of GS have been found in pumpkin leaves and in green cotyledons: chloroplast GS and cytosol GS. Cotyledons of etiolated pumpkin seedlings contain only the cytosol GS. Illumination of etiolated pumpkin seedlings with white light results in the appearance, within one minute, of the second molecular form, the chloroplast GS, which appears to be due to activation rather than de novo synthesis of the enzyme. Cotyledons of resting seeds of horse bean, pea, soybean and lupine contain only one form of GS. The second form, chloroplast GS, appears after germination in the light, but only in those cotyledons of soybean and lupine that can become green.  相似文献   

12.
Light Dependent Increase of Triosephosphate Dehydrogenase in Pea Leaves   总被引:4,自引:4,他引:0  
Data from 3 lines of investigation were presented indicating that chlorophyll is not necessary for the increase in the triphosphopyridine nucleotide-requiring triosephosphate dehydrogenase accompanying the illumination of etiolated pea plants. These include A) the kinetics of the development of chlorophyll and enzyme activity, B) the presence of enzyme activity in leaves grown in the dark on normal plants and C) the high specific enzyme activity in leaves of a chlorophyll-less mutant.It was also shown that the light-initiated increase of enzyme activity continues for several days after removal from the light and that illumination with far-red light before the dark period inhibited, but did not abolish, this increase. The ability of green plants to continue to produce the enzyme in the dark was eventually lost with time, for after 7 days in the dark a stimulation in leaf protein formation was not accompanied by an increase in enzyme activity.  相似文献   

13.
The suggested link between intracellular cytokinin signaling and phospholipase D (PLD, EC 3.1.4.4.) activity (Romanov et al. 2000, 2002) was investigated. The activity of PLD in the early period of cytokinin action was studied in vivo in derooted Amaranthus caudatus seedlings, using the level of phosphatidylbutanol production as a measure of PLD activity. Rapid activation of phosphatidylbutanol synthesis was demonstrated as early as within 5 min of cytokinin administration. Neomycin, a known phosphatidylinositol‐4,5‐bisphosphate (PIP2) antagonist, strongly repressed both physiological cytokinin effect and cytokinin‐dependent PLD activation. N‐acylethanolamine (NAE 12), an inhibitor of α‐class PLD, did not influence significantly cytokinin effect on Amaranthus seedlings. Together, results suggest the involvement of PIP2‐dependent non‐class α‐PLD in the molecular mechanism of cytokinin action.  相似文献   

14.
Using gas chromatography it was shown that acetylcholine (ACh) was present in both etiolated and green oat (Avena sativa L. cv. Diadem) seedlings. In etiolated seedlings the ACh level was low, but increased rapidly during exposure to sunlight and red light (RL). The stimulative influence of RL was reversed by far-red light (FRL). The RL- and FRL- changes in ACh level were correlated to changes in acetylcholinesterase (AChE) localization. Using Karnovsky's method, it was found that in the etiolated coleoptiles the products of enzymatic reaction showing AChE activity accumulated selectively on the external side of plasma membrane. After exposure of seedlings to RL AChE activity disappeared. Subsequent FRL made it reappear on the external side of the plasma membrane. When the plants became green, oscillations of ACh were clearly observable. For plants grown under a LD 16:8 cycle the changes were circadian.  相似文献   

15.
Hauke Holtorf  Klaus Apel 《Planta》1996,199(2):289-295
In etiolated barley (Hordeum vulgare L.) seedlings the light-induced accumulation of chlorophyll is controlled by two light-dependent NADPH-proto-chlorophyllide oxidoreductase (POR; EC 1.6.99.1) enzymes. While the concentration of one of these enzymes (POR A) and its mRNA rapidly decline during illumination, the second POR protein (POR B) and its mRNA remain at an approximately constant level during the transition from dark growth to the light. These results may suggest that only one of the enzymes, POR B, operates throughout the greening process and in light-adapted mature plants while the second enzyme, POR A, is active only in etiolated seedlings at the beginning of illumination. The fate of the two POR proteins and their mRNAs in fully green plants, however, has not been studied yet. In the present work we determined changes in the level of POR A and POR B proteins and mRNAs in green barley plants kept under a diurnal 12 h light/12 h dark cycle. In green barley plants, not only POR B is present but also trace amounts of POR A continue to reappear transiently at the end of a night period and seem to be involved in the synthesis and accumulation of chlorophyll at the beginning of each day.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Lhcb light-harvesting chlorophyll a/b protein - Pchlide protochlorophyllide - POR NADPH-protochlorophyllide oxidoreductase Dedicated to Horst Senger on the occasion of his 65th birthday.We thank Dr. Dieter Rubli for photography and Renate Langjahr for typing. This work was supported by the Swiss National Science Foundation and the ETH-Zürich.  相似文献   

16.
We have investigated the regulation of ferredoxin–glutamate synthase (Fd-GOGAT) in leaves of barley (Hordeum vulgare L. cv. Maris Mink) at the mRNA, protein and enzyme activity levels. Studies of the changes in Fd-GOGAT during plant development showed that the activity in shoots increases rapidly after germination to reach a maximum (on a fresh-weight basis) at day 10 and then declines markedly to less than 50% of the maximal activity by day 30, this decline being correlated with an equivalent loss of Fd-GOGAT protein. Growing the plants in darkness reduced the maximum activity attained in the shoots, but did not affect the overall pattern of the changes or their timing. The activity of Fd-GOGAT increased two- to three-fold within 48 h when etiolated leaves were exposed to light, and Northern blots indicated that the induction occurred at the mRNA level. However, whilst a carbon source could at least partially substitute for light in the induction of nitrate reductase activity, no induction of Fd-GOGAT activity was seen when etiolated leaves were treated with either sucrose or glucose. Interestingly, the levels of Fd-GOGAT mRNA and activity remained high up to a period of 16 h or 72 h darkness, respectively. Compared with plants grown in N-free medium, light-grown plants supplied with nitrate had almost two-fold higher Fd-GOGAT activities and increased Fd-GOGAT mRNA levels, but nitrate had no effect on the abundance of the enzyme or its mRNA in etiolated plants, indicating that light is required for nitrate induction of barley Fd-GOGAT. Received: 23 April 1997 / Accepted: 28 May 1997  相似文献   

17.
Glucuronokinase (EC 2.7.1.43) activity was detected in etiolated seedlings of corn, mung bean and soybean. Biosynthesis of glucuronokinase is not limited to seedlings, because expanding green leaves of corn produced almost as much glucuronokinase activity as etiolated seedlings when data were expressed on the basis of soluble protein. The enzyme was also present in extracts of tobacco callus and Lilium longiflorum pollen, with more enzyme activity obtained from pollen than any other source. Detection of glucuronokinase in green leaves of of mung bean was precluded by the presence of an enzyme inhibitor.  相似文献   

18.
We studied the effect of 24-epibrassinolide (EB) on the levels of endogenous hormones and photomorphogenesis of Arabidopsis thaliana (L.) Heynh wild-type (Ler) and mutant (hy4) seedlings. This mutant is deficient in the cryptochrome 1 (CRY1) synthesis. CRY1, which is a product of the HY4 gene, is a blue light photoreceptor in wild-type plants, but is sensitive to green light as well. In dark-grown seven-day-old mutant seedlings, the ABA/zeatin ratio differed from this ratio in wild-type seedlings. Thehy4 mutant exhibited a lower zeatin and higher free-ABA contents, which could retard its hypocotyl growth in darkness. EB retarded the growth of hypocotyls in etiolated hy4 seedlings and enlarged their cotyledons more efficiently than in wild-type seedlings. Green light (GL) did not affect the growth of hypocotyls but enlarged cotyledons of hy4 seedlings, which might be associated with some increase in the level of free IAA and a considerable decrease in free ABA and also with a decrease in the cytokinin level in seedlings. The hy4 cotyledon response to GL depended evidently on photoreceptors other than CRY1. GL enhanced the effects of EB on the morphogenesis of both Ler and hy4 seedlings, which was coupled with changes in the balance of endogenous IAA, ABA, and cytokinins. We may suppose that EB is involved in the control of photomorphogenesis by interaction with endogenous hormones, which are involved in the transduction of a light signal absorbed by the GL photoreceptors.  相似文献   

19.
l-alanine decarboxylase in Camellia sinensis   总被引:1,自引:0,他引:1  
l-Alanine decarboxylase, extracted from the cotyledon and root of tea seedling, had a pH optimum of 6.25. Pyridoxal-5-phosphate did not activate the enzyme. The enzyme was partially stabilized by l-alanine. Enzyme activity in green seedlings was higher than in etiolated seedlings.  相似文献   

20.
While conducting a purification protocol of phospholipase D (PLD) from human granulocytes, we observed that PLD activity was inhibited by a commonly-used protease inhibitor cocktail. Of the six inhibitors present in the cocktail, the serine protease inhibitor, 4-(2-aminoethyl)-benezensulfonyl fluoride (AEBSF), was found to be the sole inhibitor of PLD. AEBSF caused a loss of neutrophil and purified plant PLD activities in vitro, but not in intact cells at the concentrations used, nor did it affect the related phospholipases A(2) and C, that were utilized as specificity controls. The compound AEBSNH(2), which has the fluoride replaced by an -NH(2) group, failed to affect PLD activity as did other compounds structurally related to AEBSF with known protease inhibitory capabilities. Finally, basal- and agonist-stimulated PLD activity was inhibited in phosphatidylcholine-specific anti-PLD immunoprecipitates (IC(50) = 75 microM). These results suggest that AEBSF, in an effect probably unrelated to its anti-proteolytic ability, directly interferes with PLD enzymatic activity, making it a significant compound to begin analyzing the role of PLD in mammalian cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号