首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Twenty Tn5 insertion mutants of the drug resistance plasmid pKM101 have been isolated that are unable to enhance mutagenesis with ultraviolet (UV) irradiation or methyl methanesulfonate. By restriction mapping, the Tn5 insertion in each of these pKM101 mutants was shown to be within a 1.9 kb region of the plasmid genome. We have termed this segment of the pKM101 map the muc (mutagenesis: UV and chemical) gene(s). Characterization of these mutants indicated that any Tn5 insertion within the muc gene(s) abolished the ability of pKM101 to: (a) enhance spontaneous, UV and chemical mutagenesis, (b) increase host survival following UV-irradiation, (c) increase the survival of UV-irradiated phage plated on irradiated or unirradiated cells, and (d) suppress the repair and mutagenesis deficiencies of a umuC mutant. Possible models to explain the role of the pKM101 muc gene(s) in mutagenesis and repair are discussed.  相似文献   

2.
Summary Recombinant plasmids which render their host less mutable and more sensitive to some DNA-damaging agents have been isolated from the N-group plasmid R46. These plasmids have been physically mapped and found to originate from the region of R46 that has been deleted in pKM101. This deleted region is well removed from the muc region of R46 and pKM101 which is responsible for the mutator effects of these plasmids.The effect of these anti-mutagenic plasmids on the ability of pKM101 to complement umuC mutations has been examined, and they have been found to inhibit the complementation of such strains. We propose that these plasmids may code for a negative control function acting on the muc gene.  相似文献   

3.
Summary The drug resistance plasmid pKM101 plays a major role in the Ames Salmonella/microsome carcinogen detecting system by enhancing chemical mutagenesis. It is shown that in Escherichia coli K-12 the plasmid pKM101 enhances both spontaneous and methyl methanesulfonate-caused reversion of an ochre mutation, bacterial survival after ultraviolet irradiation, and reactivation of ultraviolet-irradiated in unirradiated cells. All these effects are shown to be dependent on the recA + lexA+ genotype but not on the recB + recC+ or recF + genotypes. The recA lexA-dependence of the plasmid-mediated repair and mutagenesis suggests an interaction with the cell's inducible error-prone repair system. The presence of pKM101 is shown to cause an additional increase in methyl methanesulfonate mutagenesis in a tif mutant beyond that caused by growth at 42°. The presence of the plasmid raises the level of the Weigle-reactivation curve for the reactivation of ultraviolet-irradiated in E. coli and causes a shift of the maximum to a higher UV fluence. These observations suggest that pKM101 does not exert its effects by altering the regulation of the cell's error-prone repair system but rather by supplying a mechanistic component or components.  相似文献   

4.
Plasmid-curing activity of N,N′-bis(decyldimethyl)-1,6-hexanediammonium dibromide, BDHD, was tested on six different plasmids inE. coli and plasmid pKM 101 inS. typhimurium. BDHD eliminated theFlac plasmid fromE. coli cells only with a low efficiency. Plasmid pKM 101 was eliminated fromS. typhimurium cells significantly and this effect was dependent on an outer membrane pattern. A deep-rough mutant ofS. typhimurium is completely resistant to curing activity of BDHD, while part-rough and smooth cells are susceptible to it. In contrast to pKM 101, a cryptic plasmid being present inS. typhimurium cells was not eliminated by BDHD. The curing activity of sodium dodecyl sulfate, acridine orange, crystal violet, and promethazine was also affected by the outer membrane pattern ofS typhimurium cells.  相似文献   

5.
Summary The plasmid ColIb-P9 introduced into Escherichia coli K12 umuC mutant cells suppresses the deficiencies in mutagenesis and repair of mutants after UV-irradiation. These data suggest that ColIb-P9 encodes a product with a function similar to that of the chromosomal gene umuC. Tn5 insertion mutants of ColIb-P9 were isolated with an altered ability to restore UV-mutagenesis in the umuC mutant. The same plasmid mutations were shown to eliminate the effects of ColIb-P9 on UV-mutagenesis, survival after UV and mitomycin C treatment, reactivation of UV-irradiated in unirradiated cells, Weigle-reactivation, induction of colicin E1 synthesis. The ColIb-P9 genes responsible for the enhancement of UV-mutagenesis were cloned within a 14 Md SalI fragment. Their location was established by restriction analysis of the mutant plasmid ColIb 6-13::Tn5.While the action of the plasmids ColIb-P9 and pKM101 is similar, these plasmids were shown to have opposite effects on cell survival and colicin E1 synthesis after mitomycin C treatment. A study of the mutant plasmids ColIb::Tn5 and pGW12 (muc - mutant of pKM101) has shown the difference in the effects of ColIb-P9 and pKM101 to be associated with the plasmid genes responsible for the protective and mutagenesis-enhancing effects of these plasmids in UV-irradiated cells.Abbreviations MC mitomycin C - ICS induction of colicin synthesis  相似文献   

6.
Lignobacter strain K17 is able to degrade aromatic compounds and to fix atmospheric nitrogen. It was proved that capacity for nitrogen fixation by Lignobacter was plasmid mediated. Plasmid pUCS100 (17.5 Mdal) carrying nif genes was transferred from Lignobacter to Escherichia coli SK1592 and Salmonella typhimurium. The transposon Tn9 was translocated to pUCS100 to facilitate selection of Nif+ bacteria. E. coli SK1592 harboring the new plasmid (pUCS101) reduced acetylene under anaerobic conditions. Plasmids pUCS100 and pUCS101 were not stably maintained in E. coli and S. typhimurium.Abbreviations Mdal megadalton - CsCl-EtBr caesium chloride ethidium bromide - m.o.i. multiplicity of infection  相似文献   

7.
Bacterial survival after UV irradiation was increased in E. coli K12 lexB30 and tif zab-53 mutants harboring plasmid pKM101. Mutagenesis in response to UV was observed in these bacteria which, in absence of pKM101, are not UV-mutable. The mutator effect observed in unirradiated wild-type cells containing pKM101 was higher after incubation at 30°C with adenine than at 37°C. This effect was still enhanced by tif mutation, even in the tif zab-53 strain, but it was abolished by lexB30 mutation. In the tif zab-53 (pKM101) strain, repair and mutagenesis of UV-irradiated phage λ was observed, but not in the lexB30 mutant carrying pKM101. The pKM101 mutant, pGW1, was unable to protect tif zab-53 bacteria against killing by UV, whereas the protection of lexB30 was intermediate; moreover, it did not promote the mutator effect at 30°C or enhance phage repair and mutagenesis in tif zab-53 cells. All UV-induced bacterial mutations in lexB30 (pKM101) strain were suppressors; in contrast, true revertants were found after UV irradiation of the tif zab-53 (pKM101) cells.We suggest that the constitutive activity of RecA protein is enough for the production of UV-promoted suppressor mutations, whereas true reversions require a more active form of this protein which could exert its effects directly or by acting at a regulatory level on other cellular functions.  相似文献   

8.
The light-induced action of 8-methoxypsoralen (8-MOP) on λ phage and plasmids yields monoadducts and interstrand crosslinks. The survival and clear plaque mutation frequency in the phage photosensitized with 8-MOP and irradiated with UV at wavelength >320 nm are increased when the wild-type host (Escherichia coli uvr +) is subjected to UV irradiation (wavelength = 254 nm) prior to phage inoculation. These phenomena are known as “W reactivation” and “W mutagenesis.” It is shown that 8-MOP monoadducts in λ DNA induce clear mutations in the phage inoculated to UV-irradiated excision repair mutants of E. coli only when the error-prone repair is performed by MucA 2 B, but not PolV (UmuD 2 C) polymerase. The efficiency of the SOS repair (W reactivation) of 8-MOP monoadducts in plasmid and λ phage DNA also only increases with the presence of pKM101 plasmid muc + in E. coli uvr ?.  相似文献   

9.
Summary The UV protection and mutation properties of the I group plasmid TP110 have been investigated. It is demonstrated that the genes responsible for these effects are able to complement the deficiency in umuC36 mutants of E. coli, as are the similar genes carried by the B group plasmid R16. Mu-lac inserts into TP110 have been isolated which abolish the UV protection and mutation functions. Restriction mapping of these inserts locates them within a single region of the genome. A comparison of the restriction sites of this region with the muc region of pKM101 reveals very little similarity. Expression of -galactosidase in those Mu-lac inserts in which the lacZ gene is fused to the promoter for the protection and mutation functions is inducible by DNA damaging agents, and induction in mutant strains suggests that these genes are under the direct control of the lexA repressor.  相似文献   

10.
Spontaneous reversion of the base-pair substitution trpE8 marker in the LT2 sub-line of Salmonella typhimurium is significantly increased in the presence of the ultraviolet light-protecting and mutation-enhancing plasmid pKM101. The numbers of Trp+ revertants arising on plates of defined medium supplemented with trace amounts of nutrient broth have been found to depend upon the nature of the carbon source provided to support growth of both the background lawn and any revertants which may arise. For example, the yield of Trp+ revertants can be some 5–8 times greater when glycerol is the carbon source as compared to when glucose is the carbon source. S. typhimurium strain TA100, which carries the base-pair substitution hisG46 marker and pKM101, shows a similar response, although the difference is much smaller. Time-course experiments using both carbon sources indicate that the final trpE8 → Trp+ mutation yield is depressed by glucose rather than enhanced by a ‘mutagenic’ effect of glycerol. These results are consistent with the idea that a glucose-repressible function responsible for generating mutations can be switched on by growth on glycerol as sole carbon source. Evidence is also presented that many more mutational events occur in response to a mild temperature stress (42°) in populations growing on glycerol as carbon source than occur in populations growing on glucose.  相似文献   

11.
The drug resistance plasmid pKM101 makes Escherichia coli resistant to the lethal effects of ultraviolet (UV) irradiation and more susceptible to mutagenesis by a variety of agents. The plasmid operon responsible for increasing mutagenesis has been termed mucAB (Mutagenesis, UV and chemical). We have isolated a derivative of pKM101 called pGW1975 which makes cells more sensitive to killing by UV but which retains the ability of pKM101 to increase susceptibility to methyl methanesulfonate (MMS) mutagenesis. pGW1975 increases UV mutagenesis less than pKM101 in a uvrA+ strain but more than pKM101 in a uvrA strain. muc point and insertion mutants of pKM101 and pGW1975 complement to restore the plasmid-mediated: (i) ability to reactivate UV-irradiated phage, (ii) resistance to killing by UV, and (iii) level of susceptibility to UV mutagenesis. We have identified a 2.0 kb region of pKM101 which is responsible for the complementation and which maps counterclockwise of mucAB.  相似文献   

12.
In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid pKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions.  相似文献   

13.
Summary pKM101, a plasmid R factor of the N compatibility group increases methylmethane sulfonate mutagenesis and diminishes UV-killing in recA + lex + and recA + lex strains, but not in recA lex + strains. The induction of a reclex dependent colicin is not present in lex strains carrying the pKM101 factor. These facts indicate that pKM101 acts through an error-prone DNA repair system, which is recA + dependent, but not lex + dependent.This paper is published on the occasion of Dr. C. Callerio's seventy-fifth birthday  相似文献   

14.
A screening procedure was developed for identifying mutants of the plasmid pKM101 no longer capable of enhancing mutagenesis. The test was based on the large pKM101-mediated increase in the number of Gal+ papillae observed on colonies of Salmonella typhimurium gal mutants plated on tetrazolium-galactose plates in the presence of a mutagen. The pKM101 mutant plasmids transferred normally, were stably maintained in cells, caused normal levels of ampicillin resistance, and still imparted sensitivity to phage Ike to their hosts. However, the pKM101 mutants had lost the ability to (i) enhance the reversion of both point and frameshift mutations, (ii) protect the cells against killing by UV irradiation, (iii) increase the spontaneous reversion rates of point mutations, (iv) enhance plasmid-mediated reactivation of UV-irradiated phage P22, (v) enhance Weigle reactivation. One pKM101 mutant with different properties from the others was identified by its increased spontaneous mutator effect. It is suggested that pKM101 amplifies the activity of the inducible error-prone repair systems in bacteria and that this is the function of pKM101 in the Ames Salmonella tester strains used for detection of carcinogens as mutagens.  相似文献   

15.
Summary The regulation of synthesis of arg enzymes in Salmonella typhimurium by the arginine repressor of Escherichia coli K-12 has been reevaluated using a strain of S. typhimurium in which the argR gene was rendered nonfunctional by inserting the translocatable tetracyclineresistance element Tn10 into the argR gene. In contrast to previous studies, the introduction of the argR + allelle of E. coli on an F-prime factor to the argR::Tn10 S. typhimurium strain reduced the synthesis of arg enzymes to essentially wild-type levels. The elevated levels of arg enzymes observed in other hybrid merodiploids may have been the consequence of the formation of hybrid repressor molecules. The readily scoreable phenotype of tetracycline resistance facilitated establishing linkage of cod and argR (0.6% cotransduction) by P22 phage-mediated transduction.  相似文献   

16.
Summary Selection for 3-amino-1,2,4-triazole (AT) resistance in certain strains of Salmonella typhimurium has been previously shown to select for genetic tandem duplications of the histidine operon. We show here that agents which induce tandem duplications are less effective in such induction in the presence of the pKM101 plasmid. The presence of the plasmid also produces an increase in AT-resistance due to mechanisms other than duplication, presumably because pKM101 produces high levels of error-prone repair. We suggest that high levels of error-prone repair may cause decreases in tandem duplication induction and propose that error-prone repair and tandem duplication may be alternative cellular responses to certain DNA lesions.  相似文献   

17.
Summary Plasmid R46 (an R factor conferring resistance to ampicillin, sulfonamides, streptomycin and tetracycline) reduces the bactericidal effect of UV irradiation but increases its mutagenic effect (reversion of hisG46), and raises the frequency of spontaneous reversion (mutator effect). Putative deletion mutants of R46 were obtained by transduction of the plasmid, then two successive conjugal transfers. Plasmids of five of six deletion classes, each with a different combination of drug resistance traits, retained conjugative ability and the UV-protecting, mutagenesis-enhancing and mutator effects of R46. (pKM101, used in the Ames system to enhance responsiveness to chemical mutagens, is one such mutant of R46.) Plasmids of a sixth class, represented by pKM115, conferred resistance only to streptomycin and were non-conjugative. All of several such plasmids (of independent origin) had a much stronger mutator effect than did R46, but lacked UV-protecting ability and did not enhance the mutagenic effect of UV irradiation. We infer that R46 possesses: (i) a gene, uvp, which increases capacity for error-prone repair of UV-damaged DNA, and thus causes both UV protection and enhancement of UV mutagenesis; (ii) gene(s) whose action in the absence of gene uvp greatly increases the frequency of spontaneous reversion of hisG46. A plasmid of another incompatibility group, pLS51, has UV-protecting and mutagenesis-enhancing effect but lacks the mutator property; introduction of pLS51 into a clone of hisG46 carrying a pKM115-type plasmid greatly reduced its spontaneous reversion rate, as expected if pLS51 also has a uvp gene able to modulate the mutator effect of R46-derived gene(s) in the pKM115-type plasmid.  相似文献   

18.
The host-controlled K-restriction of unmodified phage lambda is ten to hundred-fold alleviated in the E. coli K12 strain, carring plasmid pKM101 of N-incompatibility group. By restriction mapping Tn5 insertion in pKM101, which reduced pKM101-mediated alleviation of K-restriction, was shown to by located within BglII-B-fragment approximately 9 kb anticlockwise from the EcoRI-site of pKM101. We have termed the gene(s) promoting the alleviation of K-restriction ARD (Alleviation of Restriction of DNA). It was shown that (i) plasmid pKM101-mediated alleviation of K-restriction did not depend on bacterial genes LexA, RecBC, umuC and plasmid gene muc; (ii) ard gene did not mediate EcoK type modification of DNA and did not enhance the modification activity of EcoK system in a way similar to that observed with RAL gene of phage lambda. Action of Ard gene of plasmid pKM101 is highly specific: alleviation of restriction of DNA lambda takes place only in K-strains of E. coli and is practically absent in B-strains and also in E. coli strains which have restricting enzymes of 11 type, EcoRI and EcoRIII.  相似文献   

19.
Role of hns in the virulence phenotype of pathogenic salmonellae   总被引:5,自引:2,他引:3  
A TnphoA-generated mutant C5060, attenuated for virulence, was derived from the mouse-virulent Salmonella typhimurium strain C5. This mutation, designated hns-112::TnphoA, harbours the transposon in the 3 end of hns, with the alkaline phosphatase open reading frame in the opposite orientation to that of hns. Bacterial strains harbouring hns-112::TnphoA were mucoid and had altered levels of DNA supercoiling, as monitored using pUC18 as a reporter plasmid. Transduction of hns-112::TnphoA into mouse virulent strains, including S. typhimurium SL1344 and Salmonella enteritidis Se795, resulted in attenuation. When an independent hns mutation, harbouring a kanamycin-resistance cassette inserted into the Kpnl site at base pair 237 of the hns gene, was introduced into S. typhimurium C5, the isolates were also attenuated. S. typhimurium C5 isolates harbouring the multicopy plasmid pGB651, which encodes the Escherichia coli hns gene, were partially attenuated in mice. Transductional analysis, using Tn10 insertions located close to the hns gene, showed that virulence could be restored In genetic crosses that eliminated the resident hns mutations. However, some hns+ transductants were stilt attenuated, suggesting that secondary attenuating lesions can accumulate in hns-deficient strains. These studies show that the hns locus plays a role in Salmonella virulence.  相似文献   

20.
Functional organization of plasmid pKM101.   总被引:27,自引:18,他引:9       下载免费PDF全文
Tn5 insertion mutants and in vitro-generated deletion mutants of the mutagenesis-enhancing plasmid pKM101 have been used to identify several genetic regions on the pKM101 map. In clockwise order on the pKM101 map are: (i) the bla gene, coding for a beta-lactamase; (ii) the Slo region, responsible for retarding cell growth on minimal medium; (iii) the tra genes, enabling pKM101 to transfer conjugally; (iv) sensitivity to IKe phage (this function[s] maps within the tra region); (v) the muc gene(s), responsible for enhancing ultraviolet light and chemically induced mutagenesis in the cell; and (vi) the Rep region, essential for plasmid replication. The muc gene(s) and the Rep region are contained in a deoxyribonucleic acid region bounded by inverted repeated sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号