首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes encoding 16S rRNA and genomic PCR-fingerprinting with MBOREP1 and BOXC1 primers, demonstrated that the new isolates share a genetic background closely related to that of the previously reported Rhizobium sp. Or191 recovered from an acid soil in Oregon (B. D. Eardly, J. P. Young, and R. K. Selander, Appl. Environ. Microbiol. 58:1809–1815, 1992). Growth curves, melanin production, temperature tolerance, and megaplasmid profiles of the AT isolates were all coincident with these characteristics in strain Or191. In addition to the ability of all of these strains to nodulate alfalfa (Medicago sativa) inefficiently, the AT isolates also nodulated the common bean and Leucaena leucocephala, showing an extended host range for nodulation of legumes. In alfalfa, the time course of nodule formation by the AT isolate LPU 83 showed a continued nodulation restricted to the emerging secondary roots, which was probably related to the low rate of nitrogen fixation by the largely ineffective nodules. Results demonstrate the complexity of the rhizobial populations present in the acidic soils represented by a main group of N2-fixing rhizobia and a second group of ineffective and less-predominant isolates related to the AT strain Or191.  相似文献   

2.
3.
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover.  相似文献   

4.
Phenotypic and DNA sequence comparisons are presented for eight Rhizobium isolates that were cultured from field-grown alfalfa (Medicago sativa L.) in Oregon. These isolates were previously shown to nodulate both alfalfa and common bean (Phaseolus vulgaris (L.) Savi.). The objective of the present study was to determine their phylogenetic relationships to the normal symbionts of these plants, Rhizobium meliloti and Rhizobium leguminosarum biovar phaseoli, respectively. Phenotypically, the Oregon isolates more nearly resemble strains from P. vulgaris than those from M. sativa. For example, even though nitrogen fixation levels were low with both host species, the symbiotic efficiency of a representative Rhizobium isolate (Or 191) with common bean was twice that observed with alfalfa. Comparative sequencing of a 260-bp segment of the 16S rRNA gene (directly sequenced after amplification by the polymerase chain reaction) demonstrated that Or 191 is not closely related to the type strain of R. meliloti (ATCC 9930), R. leguminosarum (ATCC 10004), or Rhizobium tropici (CIAT 899). Instead, sequence comparisons of the 16S gene indicated that Or 191 belongs to a distinct and previously unrecognized taxonomic group that includes strains that have previously been called R. leguminosarum bv. phaseoli type I. Unlike type I strains, however, Or 191 has only a single copy of the nifH gene (type I strains have three), and the nucleotide sequence of this gene is substantially different from those of other rhizobial and nonrhizobial nifH genes examined thus far.  相似文献   

5.
Phenotypic and DNA sequence comparisons are presented for eight Rhizobium isolates that were cultured from field-grown alfalfa (Medicago sativa L.) in Oregon. These isolates were previously shown to nodulate both alfalfa and common bean (Phaseolus vulgaris (L.) Savi.). The objective of the present study was to determine their phylogenetic relationships to the normal symbionts of these plants, Rhizobium meliloti and Rhizobium leguminosarum biovar phaseoli, respectively. Phenotypically, the Oregon isolates more nearly resemble strains from P. vulgaris than those from M. sativa. For example, even though nitrogen fixation levels were low with both host species, the symbiotic efficiency of a representative Rhizobium isolate (Or 191) with common bean was twice that observed with alfalfa. Comparative sequencing of a 260-bp segment of the 16S rRNA gene (directly sequenced after amplification by the polymerase chain reaction) demonstrated that Or 191 is not closely related to the type strain of R. meliloti (ATCC 9930), R. leguminosarum (ATCC 10004), or Rhizobium tropici (CIAT 899). Instead, sequence comparisons of the 16S gene indicated that Or 191 belongs to a distinct and previously unrecognized taxonomic group that includes strains that have previously been called R. leguminosarum bv. phaseoli type I. Unlike type I strains, however, Or 191 has only a single copy of the nifH gene (type I strains have three), and the nucleotide sequence of this gene is substantially different from those of other rhizobial and nonrhizobial nifH genes examined thus far.  相似文献   

6.
The symbiosis between Rhizobium and legumes is highly specific. For example, R. meliloti elicits the formation of root nodules on alfalfa and not on vetch. We recently reported that R. meliloti nodulation (nod) genes determine the production of acylated and sulfated glucosamine oligosaccharide signals. We now show that the biochemical function of the major host-range genes, nodH and nodPQ, is to specify the 6-O-sulfation of the reducing terminal glucosamine. Purified Nod factors (sulfated or not) from nodH+ or nodH- strains exhibited the same plant specificity in a variety of bioassays (root hair deformations, nodulation, changes in root morphology) as the bacterial cells from which they were purified. These results provide strong evidence that the molecular mechanism by which the nodH and nodPQ genes mediate host specificity is by determining the sulfation of the extracellular Nod signals.  相似文献   

7.
8.
The Rhizobium meliloti nodH gene is involved in determining host range specificity. By comparison with the wild-type strain, NodH mutants exhibit a change in host specificity. That is, although NodH mutants lose the ability to elicit root hair curling (Hac-), infection threads (Inf-), and nodule meristem formation (Nod-) on the homologous host alfalfa, they gain the ability to be Hac+ Inf+ Nod+ on a nonhomologous host such as common vetch. Using root hair deformation (Had) bioassays on alfalfa and vetch, we have demonstrated that sterile supernatant solutions of R. meliloti cultures, in which the nod genes had been induced by the plant flavone luteolin, contained symbiotic extracellular signals. The wild-type strain produced at least one Had signal active on alfalfa (HadA). The NodH- mutants did not produce this signal but produced at least one factor active on vetch (HadV). Mutants altered in the common nodABC genes produced neither of the Had factors. This result suggests that the nodABC operon determines the production of a common symbiotic factor which is modified by the NodH product into an alfalfa-specific signal. An absolute correlation was observed between the specificity of the symbiotic behavior of rhizobial cells and the Had specificity of their sterile filtrates. This indicates that the R. meliloti nodH gene determines host range by helping to mediate the production of a specific extracellular signal.  相似文献   

9.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.  相似文献   

10.
Genes contributing to riboflavin production in Sinorhizobium meliloti were identified, and bacterial strains that overproduce this vitamin were constructed to characterize how additional riboflavin affects interactions between alfalfa (Medicago sativa) and S. meliloti. Riboflavin-synthesis genes in S. meliloti were found in three separate linkage groups and designated as ribBA, ribDribC, and ribH for their similarities to Escherichia coli genes. The ribBA and ribC loci complemented corresponding E. coli rib mutants. S. meliloti cells containing extra copies of ribBA released 10 to 20% more riboflavin than a control strain but grew at similar rates in a defined medium lacking riboflavin. Cells carrying extra copies of ribBA colonized roots to densities that were 55% higher than that of a control strain. No effect of extra rib genes was detected on alfalfa grown in the absence or presence of combined N. These results support the importance of extracellular riboflavin for alfalfa root colonization by S. meliloti and are consistent with the hypothesis that this molecule benefits bacteria indirectly through an effect on the plant.  相似文献   

11.
The stability of the thy autoselective system, based on an essential thymidylate synthase gene, for enhanced maintenance of plasmid vectors in Rhizobium meliloti was evaluated in the greenhouse and with field-grown alfalfa. The thy autoselective system consists of a free-replicating, broad-host-range plasmid vector containing a copy of the thyA gene from Lactococcus lactis subsp. lactis and a spontaneous mutant of R. meliloti deficient in thymidylate synthase (Thy(sup-)). Under greenhouse conditions, Thy(sup-) rhizobia did not persist in rooting solution alone unless supplemented with thymidine but survived in the presence of the host plant. Nodules formed on alfalfa plants grown in thymidine-free rooting solution and inoculated with Thy(sup-) rhizobia contained only Thy(sup+) revertants. In soil, Thy(sup-) rhizobia were compromised and failed to nodulate alfalfa. Thy(sup-) mutants containing a thy plasmid survived in the rhizosphere and nodulated alfalfa like the wild-type strain. The thy autoselective system was tested in the field with Thy(sup-) strain Rm24T and pPR602, a thy plasmid vector devoid of antibiotic resistance genes and marked with constitutively expressed lacZY. At 80 days after sowing, most rhizobia isolated from the nodules of field-grown alfalfa inoculated with Rm42T(pPR602) contained pPR602. The thy autoselective system proved useful to ensure maintenance of the plasmid vector under greenhouse and field conditions in R. meliloti.  相似文献   

12.
Genomic variation between the Sinorhizobium meliloti model strain Rm1021 and the field isolate SM11 was assessed by using the genome-wide S. meliloti Rm1021 Sm6k-oligonucleotide microarray in a comparative genomic hybridisation experiment. Several gene clusters present in the Rm1021 genome are missing in the SM11 genome. In detail, three missing gene clusters were identified for the chromosome, five for megaplasmid pSymA and two for megaplasmid pSymB. To confirm these hybridisation results, the draft genome sequence of the S. meliloti field isolate SM11 was established by 454-pyrosequencing. Three sequencing runs on the ultrafast Genome Sequencer 20 System yielded 112.5 million bases. These could be assembled into 905 larger contigs resulting in a nearly 15-fold coverage of the 7.1Mb SM11 genome. The missing gene regions identified by comparative genomic hybridisation could be confirmed by the results of the 454-sequencing project. An in-depth analysis of these gene regions resulted in the following findings: (i) a complete type I restriction/modification system encoded by a composite transposon is absent in the chromosome of strain SM11. (ii) Most of the Rm1021 denitrification genes and the complete siderophore biosynthesis operon were found to be missing on SM11 megaplasmid pSymA. (iii) S. meliloti SM11 megaplasmid pSymB lacks a complete cell surface carbohydrate synthesis gene cluster. (iv) Several genes that are absent in the SM11 genome could be assigned to insertion sequences and transposons.  相似文献   

13.
A S Paau  D Lee    J R Cowles 《Journal of bacteriology》1977,129(2):1156-1158
Populations of symbiotic Rhizobium meliloti extracted from alfalfa nodules were shown by flow microfluorometry to contain a significant number of bacteroids with higher nucleic acid content than the free-living rhizobia. Bacteroids with lower nucleic acid content than the free-living bacteria were not detected in significant quantities in these populations. These results indicate that the incapability of bacteroids to reestablish growth in nutrient media may not be caused by a decrease in nucleic acid content of the symbiotic rhizobia.  相似文献   

14.
15.
A 6 kb DNA segment of the R. meliloti 2011 pSym megaplasmid, which contains genes controlling host specificity of root hair infection and of nodulation, was cloned and sequenced. The DNA sequence analysis, in conjunction with previous genetic data, allowed identification of four nod genes designated as E, F, G and H. nodH is divergently transcribed with respect to nodFE and nodG. A conserved nucleotide sequence was found around 200 bp upstream of the translation start of nodF, nodH and nodA. This sequence is also present upstream of common nodA and species specific nodF genes of other Rhizobium species. The predicted protein products of nodF and nodG show homology with acyl carrier protein and ribitol dehydrogenase, respectively. The nodH product contains a rare sequence of four contiguous proline residues. Comparison with the nod gene products of R. leguminosarum shows that species specific nodFE products are as well conserved as those of common nodABC and nodD genes.  相似文献   

16.
Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes.  相似文献   

17.
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.  相似文献   

18.
External biotin greatly stimulates bacterial growth and alfalfa root colonization by Sinorhizobium meliloti strain 1021. Several genes involved in responses to plant-derived biotin have been identified in this bacterium, but no genes required for biotin transport are known, and not all loci required for biotin synthesis have been assigned. Searches of the S. meliloti genome database in combination with complementation tests of Escherichia coli biotin auxotrophs indicate that biotin synthesis probably is limited in S. meliloti 1021 by the poor functioning or complete absence of several key genes. Although several open reading frames with significant similarities to genes required for synthesis of biotin in gram-positive and gram-negative bacteria were found, only bioB, bioF, and bioH were demonstrably functional in complementation tests with known E. coli mutants. No sequence or complementation evidence was found for bioA, bioC, bioD, or bioZ. In contrast to other microorganisms, the S. meliloti bioB and bioF genes are not localized in a biotin synthesis operon, but bioB is cotranscribed with two genes coding for ABC transporter-like proteins, designated here bioM and bioN. Mutations in bioM and bioN eliminated growth on alfalfa roots and reduced bacterial capacity to maintain normal intracellular levels of biotin. Taken together, these data suggest that S. meliloti normally grows on exogenous biotin using bioM and bioN to conserve biotin assimilated from external sources.  相似文献   

19.
An effective symbiosis between Sinorhizobium meliloti and its host plant Medicago sativa is dependent on a balanced physiological interaction enabling the microsymbiont to fix atmospheric nitrogen. Maintenance of the symbiotic interaction is regulated by still poorly understood control mechanisms. A first step toward a better understanding of nodule metabolism was the determination of characteristic metabolites for alfalfa root nodules. Furthermore, nodules arrested at different developmental stages were analyzed in order to address metabolic changes induced during the progression of nodule formation. Metabolite profiles of bacteroid-free pseudonodule extracts indicated that early nodule developmental processes are accompanied by photosynthate translocation but no massive organic acid formation. To determine metabolic adaptations induced by the presence of nonfixing bacteroids, nodules induced by mutant S. meliloti strains lacking the nitrogenase protein were analyzed. The bacteroids are unable to provide ammonium to the host plant, which is metabolically reflected by reduced levels of characteristic amino acids involved in ammonium fixation. Elevated levels of starch and sugars in Fix(-) nodules provide strong evidence that plant sanctions preventing a transformation from a symbiotic to a potentially parasitic interaction are not strictly realized via photosynthate supply. Instead, metabolic and gene expression data indicate that alfalfa plants react to nitrogen-fixation-deficient bacteroids with a decreased organic acid synthesis and an early induction of senescence. Noneffective symbiotic interactions resulting from plants nodulated by mutant rhizobia also are reflected in characteristic metabolic changes in leaves. These are typical for nitrogen deficiency, but also highlight metabolites potentially involved in sensing the N status.  相似文献   

20.
The study of the effect of the periplasmic glucan isolated from the root-nodule bacterium S. meliloti CXM1-188 on the symbiosis of another strain (441) of the same root-nodule bacterium with alfalfa plants showed that this effect depends on the treatment procedure. The pretreatment of alfalfa seedlings with the glucan followed by their bacterization with S. meliloti 441 insignificantly influenced the nodulation parameters of symbiosis (the number of root nodules and their nitrogen-fixing activity) but induced a statistically significant increase in the efficiency of symbiosis (expressed as the masses of the alfalfa overground parts and roots). At the same time, the pretreatment of S. meliloti 441 cells with the glucan brought about a considerable decrease in the nodulation parameters of symbiosis (the number of the root nodules and their nitrogen-fixing activity decreased by 2.5-11 and 7 times, respectively). These data suggest that the stimulating effect of rhizobia on host plants may be due not only to symbiotrophic nitrogen fixation but also to other factors. Depending on the experimental conditions, the treatment of alfalfa plants with the glucan and their bacterization with rhizobial cells enhanced the activity of peroxidase in the alfalfa roots and leaves by 10-39 and 12-27%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号