首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rubisco, the primary photosynthetic carboxylase, evolved 3-4 billion years ago in an anaerobic, high CO(2) atmosphere. The combined effect of low CO(2) and high O(2) levels in the modern atmosphere, and the inability of Rubisco to distinguish completely between CO(2) and O(2), leads to the occurrence of an oxygenation reaction that reduces the efficiency of photosynthesis. Among land plants, C(4) photosynthesis largely solves this problem by facilitating a high CO(2)/O(2) ratio at the site of Rubisco that resembles the atmosphere in which the ancestral enzyme evolved. The prediction that such conditions favor Rubiscos with higher kcat(CO2) and lower CO(2)/O(2) specificity (S(C/O)) is well supported, but the structural basis for the differences between C(3) and C(4) Rubiscos is not clear. Flaveria (Asteraceae) includes C(3), C(3)-C(4) intermediate, and C(4) species with kinetically distinct Rubiscos, providing a powerful system in which to study the biochemical transition of Rubisco during the evolution from C(3) to C(4) photosynthesis. We analyzed the molecular evolution of chloroplast rbcL and nuclear rbcS genes encoding the large subunit (LSu) and small subunit (SSu) of Rubisco from 15 Flaveria species. We demonstrate positive selection on both subunits, although selection is much stronger on the LSu. In Flaveria, two positively selected LSu amino acid substitutions, M309I and D149A, distinguish C(4) Rubiscos from the ancestral C(3) species and statistically account for much of the kinetic difference between the two groups. However, although Flaveria lacks a characteristic "C(4)" SSu, our data suggest that specific residue substitutions in the SSu are correlated with the kinetic properties of Rubisco in this genus.  相似文献   

2.
Previous studies [G. S. Hudson et al. (1989) J. Biol. Chem. 265, 808-814] showed that the faster turnover rates and lower affinities for CO2 of ribulosebisphosphate carboxylase/oxygenases from C4 plants, compared to C3 and C3/C4 plants, were specified by the chloroplast-encoded large subunits. In pairs of closely related C3 and C4 species from three genera, these kinetic changes were accompanied by only three to six amino acid residue substitutions, depending on the genus. None of these substitutions occurred near the active site and only one, 309Met (C3) to Ile (C4), was common to all three genera. Unlike the plant carboxylases, the highly homologous enzyme from the cyanobacterium Synechococcus PCC 6301 folds and assembles properly when its rbcL and rbcS genes are coexpressed in Escherichia coli. Furthermore, the cyanobacterial enzyme has Ile at position 309 of the large subunit, a high turnover number, and a poor affinity for CO2. 309Ile was replaced with Met and several other residues by site-directed mutagenesis of the cyanobacterial rbcL. Met and Leu were tolerated at this position with no alteration in the kinetic or structural properties of the assembled holoenzyme. However, substitution with Val, Gly, Trp, or Arg prevented the assembly of the subunits. The indifference to Met or Ile at this position, as well as the tolerance for Leu which is not observed with any natural ribulosebisphosphate carboxylase, leads to the conclusion that either the 309Met/Ile substitution has no effect on the kinetic properties of the plant enzyme, despite the correlation apparent in previous studies, or the cyanobacterial enzyme is sufficiently different from the plant enzyme in other respects that the influence of residue 309 is masked.  相似文献   

3.
4.
C4 photosynthesis is characterized by a division of labour between two different photosynthetic cell types, mesophyll and bundle-sheath cells. Relying on phosphoenolpyruvate carboxylase (PEPC) as the primary carboxylase in the mesophyll cells a CO2 pump is established in C4 plants that concentrates CO2 at the site of ribulose 1,5-bisphosphate carboxylase/oxygenase in the bundle-sheath cells. The C4 photosynthetic pathway evolved polyphyletically implying that the genes encoding the C4 PEPC originated from non-photosynthetic PEPC progenitor genes that were already present in the C3 ancestral species. The dicot genus Flaveria (Asteraceae) is a unique system in which to investigate the molcular changes that had to occur in order to adapt a C3 ancestral PEPC gene to the special conditions of C4 photosynthesis. Flaveria contains not only C3 and C4 species but also a large number of C3-C4 intermediates which vary to the degree in which C4 photosynthetic traits are expressed. The C4 PEPC gene of Flaveria trinervia, which is encoded by the ppcA gene class, is highly expressed but only in mesophyll cells. The encoded PEPC protein possesses the typical kinetic and regulatory features of a C4-type PEPC. The orthologous ppcA gene of the C3 species Flaveria pringlei encodes a typical non-photosynthetic, C3-type PEPC and is weakly expressed with no apparent cell or organ specificity. PEPCs of the ppcA type have been detected also in C3-C4 intermediate Flaveria species. These orthologous PEPCs have been used to determine the molecular basis for C4 enzyme characteristics and to understand their evolution. Comparative and functional analyses of the ppcA promoters from F. trinervia and F. pringlei make it possible to identity the cis-regulatory sequences for mesophyll-specific gene expression and to search for the corresponding trans-regulatory factors.  相似文献   

5.
The function of the C4 mechanism of photosynthesis depends on the strict compartmentation of the enzymes involved. Here, we investigate the regulatory mechanisms that ensure the mesophyll-specific expression of the C4 isoform of phosphoenolpyruvate carboxylase. We show that 2 kb of the 5[prime] flanking region of the Flaveria trinervia C4 PpcA1 gene is sufficient to direct mesophyll-specific expression of the [beta]-glucuronidase reporter gene in transgenic F. bidentis (C4) plants. In young leaves of seedlings, the activity of this promoter is dependent on the developmental stage of the mesophyll cells. It is induced in a basipetal fashion (leaf tip to base) during leaf development. The promoter region of the orthologous nonphotosynthetic Ppc gene of F. pringlei (C3) induces reporter gene expression mainly in the vascular tissue of leaves and stems as well as in mesophyll cells of transgenic F. bidentis plants. Our experiments demonstrate that during the evolution of the C4 Flaveria species, cis-acting elements of the C4 Ppc gene must have been altered to achieve mesophyll-specific expression.  相似文献   

6.
B McGonigle  T Nelson 《Plant physiology》1995,108(3):1119-1126
In C4 plants of the NADP-malic enzyme type, an abundant, mesophyll cell-localized NADP-malate dehydrogenase (MDH) acts to convert oxaloacetate, the initial product of carbon fixation, to malate before it is shuttled to the bundle sheath. Since NADP-MDH has different but important roles in leaves of C3 and C4 plants, we have cloned and characterized a nearly full-length cDNA encoding NADP-MDH from Flaveria trinervia (C4) to permit comparative structure/expression studies within the genus flaveria. The dicot genus Flaveria includes C3-C4 intermediate species, as well as C3 and C4 species. We show that the previously noted differences in NADP-MDH activity levels among C3, C4, and C3-C4 Flaveria species are in part due to interspecific differences in mRNA accumulation. We also show that the NADP-MDH gene appears to be present as a single copy among different Flaveria species, suggesting that a pre-existing gene has been reregulated during the evolution from C3 to C4 plants to accommodate the abundance and localization requirements of the C4 cycle.  相似文献   

7.
C4 phosphoenolpyruvate carboxylases have evolved from ancestral C3 isoforms during the evolution of angiosperms and gained distinct kinetic and regulatory properties compared with the C3 isozymes. To identify amino acid residues and/or domains responsible for these C4-specific properties the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia (C4) was compared with its orthologue in the closely related C3 plant Flaveria pringlei. Reciprocal enzyme chimera were constructed and the kinetic constants, K(0.5) and k(cat), as well as the Hill coefficient, h, were determined for the substrate phosphoenolpyruvate both in the presence and absence of the activator glucose 6-phosphate. By this approach two regions were identified which determined most of the kinetic differences of the C4 and C3 ppcA phosphoenolpyruvate carboxylases with respect to the substrate PEP. In addition, the experiments suggest that the two regions do not act additively but interact with each other. The region between amino acids 296 and 437 is essential for activation by glucose 6-phosphate. The carboxyl-terminal segment between amino acids 645 and 966 contains a C4 conserved serine or a C3 invariant alanine at position 774 in the respective enzyme isoform. Site-directed mutagenesis shows that this position is a key determinant for the kinetic properties of the two isozymes.  相似文献   

8.
During the evolution of angiosperms, C4 phosphoenolpyruvate carboxylases have evolved several times independently from ancestral non-photosynthetic isoforms. They show distinct kinetic and regulatory properties when compared with the C3 isozymes. To identify the evolutionary alterations which are responsible for C4-specific properties, particularly the increased tolerance towards the allosteric inhibitor L-malate, the photosynthetic phosphoenolpyruvate carboxylase of Flaveria trinervia Mohr C4 and its ortholog from the closely related C3 plant Flaveria pringlei Gand. were examined using reciprocal enzyme chimeras. The main determinants for a high tolerance towards L-malate were located in the C-terminal region of the C4 enzyme. The effect of interchanging the region between amino acids 296 and 437 was strongly dependent upon the activation of the enzyme by glucose-6-phosphate. This confirms earlier observations that this region is important for the regulation of the enzyme by glucose-6-phosphate and that it harbours determinants for the different response of the C3 and the C4 enzyme towards this allosteric activator. In addition, it was possible to demonstrate that the only C4-specific amino acid, a serine in the C-terminal part of the enzyme, is not involved in conferring an increased L-malate tolerance to the C4 enzyme.  相似文献   

9.
Evolution of C4 phosphoenolpyruvate carboxylase   总被引:8,自引:0,他引:8  
C4 plants are known to be of polyphyletic origin and to have evolved independently several times during the evolution of angiosperms. This implies that the C4 isoform of phosphoenolpyruvate carboxylase (PEPC) originated from a nonphotosynthetic PEPC gene that was already present in the C3 ancestral species. To meet the special requirements of the C4 photosynthetic pathway the expression program of the C4 PEPC gene had to be changed to achieve a strong and selective expression in leaf mesophyll cells. In addition, the altered metabolite concentrations around C4 PEPC in the mesophyll cytoplasm necessitated changes in the enzyme's kinetic and regulatory properties. To obtain insight into the evolutionary steps involved in these altered enzyme characteristics, and even the order of these steps, the dicot genus Flaveria (Asteraceae) appears to be the experimental system of choice. Flaveria contains closely related C3, C3-C4, and C4 species that can be ordered by their gradual increase in C4 photosynthetic traits. The C4 PEPC of F. trinervia, which is encoded by the ppcA gene class, possesses typical kinetic and regulatory features of a C4-type PEPC. Its nearest neighbor is the orthologous ppcA gene of the C3 species F. pringlei. This latter gene encodes a typical nonphotosynthetic C3-type PEPC which is believed to be similar to the C3 ancestral PEPC. This pair of orthologous PEPCs has been used to map C4-specific molecular determinants for the kinetic and regulatory characteristics of C4 PEPCs. The most notable finding from these investigations was the identification of a C4 PEPC invariant site-specific mutation from alanine (C3) to serine (C4) at position 774 that was a necessary and late step in the evolution of C3 to C4 PEPC. The C3-C4 intermediate ppcA PEPCs are used to identify the sequence of events leading from a C3- to a C4-type PEPC.  相似文献   

10.
A cytosolic NADP-malic enzyme (CYTME) has been described previously in several plants, all C3 species. CYTME is distinct from the chloroplastic NADP-malic enzyme (CHLME) that is highly active in C4 species. We show that at least one CytMe gene is present in all Flaveria spp., including C3, C4, and C3-C4 intermediate types. Based on the CytMe expression patterns in Flaveria pringlei (C3) and Flaveria trinervia (C4), we suggest CYTME has several distinct roles, including the supplying of NADPH for cytosolic metabolism, the supporting of wound response or repair, and the balancing of cellular pH in illuminated leaves. These three roles are likely correlated with CytMe mRNAs of apparent sizes 2.0, 2.2, and 2.4 kb, respectively, which differ in the length of the 5' untranslated regions. Various regulatory mechanisms involving RNA processing and translational efficiency are discussed.  相似文献   

11.
We report the successful transformation, via Agrobacterium tumefaciens infection, and regeneration of two species of the genus Flaveria: F. brownii and F. palmeri. We document the expression of a C3 plant gene, an abundantly expressed ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit gene isolated from petunia, in these C4 plants. The organ-specific expression of this petunia gene in Flaveria brownii is qualitatively identical to its endogenous pattern of expression.  相似文献   

12.
Plants using the C(4) pathway of carbon metabolism are marked by greater photosynthetic water and nitrogen-use efficiencies (PWUE and PNUE, respectively) than C(3) species, but it is unclear to what extent this is the case in C(3) -C(4) intermediate species. In this study, we examined the PWUE and PNUE of 14 species of Flaveria Juss. (Asteraceae), including two C(3) , three C(4) and nine C(3) -C(4) species, the latter containing a gradient of C(4) -cycle activities (as determined by initial fixation of (14) C into C-4 acids). We found that PWUE, PNUE, leaf ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) content and intercellular CO(2) concentration in air (C(i) ) do not change gradually with C(4) -cycle activity. These traits were not significantly different between C(3) species and C(3) -C(4) species with less than 50% C(4) -cycle activity. C(4) -like intermediates with greater than 65% C(4) -cycle activity were not significantly different from plants with fully expressed C(4) photosynthesis. These results indicate that a gradual increase in C(4) -cycle activity has not resulted in a gradual change in PWUE, PNUE, intercellular CO(2) concentration and leaf Rubisco content towards C(4) levels in the intermediate species. Rather, these traits arose in a stepwise manner during the evolutionary transition to the C(4) -like intermediates, which are contained in two different clades within Flaveria.  相似文献   

13.
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.  相似文献   

14.
Stable reciprocal hybrids between Flaveria pringlei (C3) and F. brownii (C4-like) have been produced by standard breeding techniques. There are no differences in the isoelectric focusing patterns of the catalytic subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase from F. pringlei, F. brownii, or the reciprocal hybrids. The enzyme from both species also contains an identical noncatalytic subunit polypeptide. However, the carboxylase enzyme from F. brownii contains another isomeric form of noncatalytic subunit polypeptide which is resolveable by isoelectric focusing. This isomeric form constitutes about 50% of the total noncatalytic subunits in this species. It comprises only about 10% of the total noncatalytic subunit population in the C3 x C4 plants, but about 42% of the noncatalytic subunits in the reciprocal cross. The concentrations of the holoenzyme in the reciprocal hybrids are comparable to those of the respective maternal parent. We hypothesize that a differential inheritance of parental chloroplasts by the reciprocal hybrids may be associated with this apparent maternal influence on the expression of the noncatalytic polypeptides and the holoenzyme concentration.  相似文献   

15.
16.
17.
The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C(4) monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C(4) photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C(3), C(3)-C(4), C(4)-like, and C(4) species of the dicot genus Flaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C(4)-like and C(4) species than in C(3) and C(3)-C(4) species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C(4) species Flaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C(4) plants and therefore is neither a prerequisite nor a consequence of C(4) photosynthesis.  相似文献   

18.
With average global temperatures predicted to increase over the next century, it is important to understand the extent and mechanisms of C4 photosynthetic acclimation to modest increases in growth temperature. To this end, we compared the photosynthetic responses of two C4 grasses (Panicum coloratum and Cenchrus ciliaris) and one C4 dicot (Flaveria bidentis) to growth at moderate (25/20 degrees C, day/night) or high (35/30 degrees C, day/night) temperatures. In all three C4 species, CO2 assimilation rates (A) underwent significant thermal acclimation, such that when compared at growth temperatures, A increased less than what would be expected given the strong response of A to short-term changes in leaf temperature. Thermal photosynthetic acclimation was further manifested by an increase in the temperature optima of A, and a decrease in leaf nitrogen content and leaf mass per area in the high- relative to the moderate-temperature-grown plants. Reduced photosynthetic capacity at the higher growth temperature was underpinned by selective changes in photosynthetic components. Plants grown at the higher temperature had lower amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase and cytochrome f and activity of carbonic anhydrase. The activities of photosystem II (PSII) and phosphoenolpyruvate carboxylase were not affected by growth temperature. Chlorophyll fluorescence measurements of F. bidentis showed a corresponding decrease in the quantum yield of PSII (phi(PSII)) and an increase in non-photochemical quenching (phi(NPQ)). It is concluded that through these biochemical changes, C4 plants maintain the balance between the various photosynthetic components at each growth temperature, despite the differing temperature dependence of each process. As such, at higher temperatures photosynthetic nitrogen use efficiency increases more than A. Our results suggest C4 plants will show only modest changes in photosynthetic rates in response to changes in growth temperature, such as those expected within or between seasons, or the warming anticipated as a result of global climate change.  相似文献   

19.
Limited information exists regarding molecular events that occurred during the evolution of C(4) plants from their C(3) ancestors. The enzyme β-carbonic anhydrase (CA; EC 4.2.1.1), which catalyses the reversible hydration of CO(2), is present in multiple forms in C(3) and C(4) plants, and has given insights into the molecular evolution of the C(4) pathway in the genus Flaveria. cDNAs encoding three distinct isoforms of β-CA, CA1-CA3, have been isolated and examined from Flaveria C(3) and C(4) congeners. Sequence data, expression analyses of CA orthologues, and chloroplast import assays with radiolabelled CA precursor proteins from the C(3) species F. pringlei Gandoger and the C(4) species F. bidentis (L.) Kuntze have shown that both contain chloroplastic and cytosolic forms of the enzyme, and the potential roles of these isoforms are discussed. The data also identified CA3 as the cytosolic isoform important in C(4) photosynthesis and indicate that the C(4) CA3 gene evolved as a result of gene duplication and neofunctionalization, which involved mutations in coding and non-coding regions of the ancestral C(3) CA3 gene. Comparisons of the deduced CA3 amino acid sequences from Flaveria C(3), C(4), and photosynthetic intermediate species showed that all the C(3)-C(4) intermediates investigated and F. brownii, a C(4)-like species, have a C(3)-type CA3, while F. vaginata, another C(4)-like species, contains a C(4)-type CA3. These observations correlate with the photosynthetic physiologies of the intermediates, suggesting that the molecular evolution of C(4) photosynthesis in Flaveria may have resulted from a temporally dependent, stepwise modification of protein-encoding genes and their regulatory elements.  相似文献   

20.
Variations in length and charge of the C-terminus of the Rubisco large subunit (L) can be seen in L from different phylogenetic lineages. We examined the catalytic parameters of Rubisco from higher plants and from engineered Synechococcus rbcL in relation to differences in the C-terminus. Among three selected higher plants, spinach, wheat, and Flaveria pringlei, spinach Rubisco with the shortest C-tail extension (D-473 + 2) showed the lowest temperature response. The response of Rubisco from wheat (D-473 + 4) was intermediate, and the enzyme from F. pringlei (D-473 + 12) displayed the highest temperature response in terms of Vmax for the carboxylase reaction. This observation was further investigated in a model system: the temperature-response for carboxylation was enhanced after lengthening the C-terminus of the Synechococcus large subunit protein by two amino acid residues (DK). The results point towards the length of the C-terminus as an additional factor for controlling Rubisco activity, especially as an adaptation that widens the temperature range in which the enzyme can function. Longer C-termini, we suggest, could establish additional interactions with the protein surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号