首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of cell culture age and concomitant changes in cell density on the biosynthesis of sulfated-proteoglycan by rabbit articular chondrocytes in secondary monolayer culture was studied. Low density (LD, 2 d), middle density (MD, 5-7 d), and high density (HD, 12-15 d) cultures demonstrated changes in cellular morphology and rates of DNA synthesis. DNA synthesis was highest at LD to MD densities, but HD cultures continued to incorporate [3H]-thymidine. LD cultures incorporated 35SO4 into sulfated-proteoglycans at a higher rate than MD or LD cultures. The qualitative nature of the sulfated-proteoglycans synthesized at the different culture ages were analyzed by assessing the distribution of incorporated 35SO4 in associative and dissociative CsCl density gradients and by elution profiles on Sepharose CL-2B. Chondrocytes deposited into the extracellular matrix (cell-associated fraction) 35SO4-labeled proteoglycan aggregate. More aggregated proteoglycan was found in the MD and HD cultures than at LD. A 35SO4-labeled aggregated proteoglycan of smaller hydrodynamic size than that found in the cell-associated fraction was secreted into the culture medium at each culture age. The proteoglycan monomer (A1D1) of young and older cultures had similar hydrodynamic sizes at all cell culture ages and cell densities. The glycosaminoglycan chains of A1D1 were hydrodynamically larger in the younger LD cultures than in the older HD cultures and consisted of only chondroitin 6 and 4 sulfate chains. A small amount of chondroitin 4,6 sulfate was detected, but no keratan sulfate was measured. The A1D2 fractions of young LD cultures contained measurable amounts of dermatan sulfate; no dermatan sulfate was found in older MD or HD cultures. These studies indicated that chondrocytes at LD synthesized a proteoglycan monomer with many of the characteristics of young immature articular cartilage of rabbits. These results also indicated that rapidly dividing chondrocytes were capable of synthesizing proteoglycans which form aggregates with hyaluronic acid. Culture age and cell density appears primarily to modulate the synthesis of glycosaminoglycan types and chain length. Whether or not these glycosaminoglycans are found on the same or different core proteins remains to be determined.  相似文献   

2.
Proteoglycans synthesized by human glomerular mesangial cells in culture   总被引:1,自引:0,他引:1  
Human fetal kidney mesangial cells were cultured for 24 h in the presence of 3H-amino acids and [35S] sulfate and chased for 24 h in nonradioactive medium. Incubation medium and cell layer proteoglycans were purified twice by high performance liquid chromatography-DEAE chromatography followed by gel filtration chromatography. The major medium 35S-macromolecules were chondroitin/dermatan-35SO4 proteoglycans. A small, Sepharose CL-6B Kav 0.14 dermatan-35SO4 proteoglycan was detected in the labeling medium and was released into both the early (time 0-0.5 h) and late (6-24 h) chase media. It contained 38 kDa 4-sulfated 35S-GAGs with a high content of iduronic acid and a 45-kDa protein core. A protein core of similar molecular weight was detected in the culture medium by Western analysis using antibodies to biglycan or proteoglycan-I (Fisher, L. W., Termine, J. D., and Young, M. F. (1989) J. Biol. Chem. 264, 4571-4576). This 35S-proteoglycan was not detected in the cell layer. However, a small dermatan-35SO4 with little or no protein core was present in the intracellular compartment. A large, Sepharose CL-6B excluded chondroitin-35SO4 proteoglycan was released into the culture medium and was detected between 6 and 24 h in chase medium. It eluted near the void volume of both associative and dissociative Sepharose CL-4B columns. It contained 30-kDa 4- and 6-sulfated 35S-GAGs and a 253-kDa protein core. A chondroitin-35SO4 proteoglycan with similar sized 35S-GAGs was detected in both the detergent-soluble and insoluble cell layer compartments. A Sepharose CL-6B Kav 0.11 heparin-35SO4 proteoglycan with a 220-kDa protein core and 38-kDa 35S-GAGs was rapidly released from the cell layer. This proteoglycan was larger than that previously described in isolated rat glomeruli or glomerular basement membranes, but had a core protein similar in size to one previously detected in these tissues. A larger heparan-35SO4 proteoglycan with larger 35S-GAGs was present in the detergent-insoluble cell layer compartment. The proteoglycans released by glomerular mesangial cells in culture resembled those synthesized by aortic smooth muscle cells in culture or extracted from aorta, supporting the notion that these cells are of vascular origin.  相似文献   

3.
Macrophages were obtained from the mouse peritoneal cavity and culturedin vitro. The cells were exposed to35S-sulphate for 20 h, and labelled proteoglycans were recovered from both medium and cell fractions by sodium dodecylsulphate solubilization. The cell fraction contained both proteoglycans and glycosaminoglycans, whereas only intact proteoglycans could be recovered from the medium fraction. 35S-Glycosaminoglycans isolated from cell and medium fractions by papain digestion were shown to contain approximately 25% heparan sulphate and 75% galactosaminoglycans comprising 55% chondroitin sulphate and 20% dermatan sulphate. The galactosaminoglycans were shown by paper chromatography to contain more than 95% 4-sulphated units. Pulse-chase experiments showed that approximately 80% of the cell-associated material was released within 6 h of incubation.35S-Proteoglycans released did not bind to the macrophages, but were recovered in a soluble form from the culture medium.Abbreviations CSPG chondroitin sulphate proteoglycan - HSPG heparan sulphate proteoglycan - SDS sodium dodecylsulphate - DME Dulbecco's Minimum Essential Medium - GAG glycosaminoglycan  相似文献   

4.
The metabolism of heparan sulfate proteoglycan was studied in monolayer cultures of a rat hepatocyte cell line. Late log cells were labeled with 35SO4(2-) or [3H] glucosamine, and labeled heparan sulfate, measured as nitrous acid-susceptible product, was assayed in the culture medium, the pericellular matrix, and the intracellular pools. Heparan sulfate in the culture medium and the intracellular pools increased linearly with time, while that in the matrix reached a steady-state level after a 10-h labeling period. When pulse-labeled cells were incubated in unlabeled medium, a small fraction of the intracellular pool was released rapidly into the culture medium while the matrix heparan sulfate was taken up by the cells, and the resulting intracellular pool was rapidly catabolized. The structures of the heparan sulfate chains in the three pools were very similar. Both the culture medium pool and the cell-associated fraction of heparan sulfate contained proteoheparan sulfate plus a polydisperse mixture of heparan chains which were attached to little, if any, protein. Pulse-chase data suggested that the free heparan sulfate chains were formed as a result of catabolism of the proteoglycan. When NH4Cl, added to inhibit lysosomal function, was present during either a labeling period or a chase period, the total catabolism of the heparan sulfate chains to monosaccharides plus free SO2-4 was blocked, but the conversion of the proteoglycan to free heparan sulfate chains continued at a reduced rate.  相似文献   

5.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

6.
The synthesis of proteoglycans by human T lymphocytes   总被引:1,自引:0,他引:1  
We have examined the proteoglycans produced by highly-purified cultures of human T-lymphocytes. The proteoglycans were metabolically labelled with [35S]sulphate and analysed in cellular and medium fractions using DEAE-cellulose chromatography, gel filtration and specific enzymatic and chemical degradations. The results showed that the T cells synthesized a relatively homogeneous, proteinase-resistant chondroitin 4-sulphate proteoglycan that accumulated in the culture medium during a 48 h incubation period. The cellular fraction contained a significant amount of free chondroitin sulphate chains that were not secreted into the medium. These polysaccharides were formed by intracellular degradation of proteoglycan in a chloroquine-sensitive process, indicating a requirement for an acidic environment. In contrast to chondroitin sulphate derived from proteoglycan, chondroitin sulphates synthesized on the exogenous primer, beta-D-xyloside, were mainly secreted by the cells. beta-D-Xylosides caused an 8-fold stimulation in the synthesis of chondroitin sulphate, but decreased the synthesis of proteoglycan by about 50%. These proteoglycans contained shorter chondroitin sulphate chains than their normal counterparts. The results indicate that although proteoglycans are mainly secretory components in human T-cell cultures, a specific metabolic step leads to the intracellular accumulation of free glycosaminoglycans. Separate functions are likely to be associated with the intracellular and secretory pools of chondroitin sulphate.  相似文献   

7.
Proteoglycans synthesized by rat chondrosarcoma cells in culture are secreted into the culture medium through a pericellular matrix. The appearance of [35S]sulphate in secreted proteoglycan after a 5 min pulse was rapid (half-time, t 1/2 less than 10 min), but that of [3H]serine into proteoglycan measured after a 15 min pulse was much slower (t 1/2 120 min). The incorporation of [3H]serine into secreted protein was immediately inhibited by 1 mM-cycloheximide, but the incorporation of [35S]sulphate into proteoglycans was only inhibited gradually(t 1/2 79 min), suggesting the presence of a large intracellular pool of proteoglycan that did not carry sulphated glycosaminoglycans. Cultures were pulsed with [3H]serine and [35S]sulphate and chased for up to 6 h in the presence of 1 mM-cycloheximide. Analysis showed that cycloheximide-chased cells secreted less than 50% of the [3H]serine in proteoglycan of control cultures and the rate of incorporation into secreted proteoglycan was decreased (from t 1/2 120 min to t 1/2 80 min). Under these conditions cycloheximide interfered with the flow of proteoglycan protein core along the route of intracellular synthesis leading to secretion, as well as inhibiting further protein core synthesis. The results suggested that the newly synthesized protein core of proteoglycan passes through an intracellular pool for about 70-90 min before the chondroitin sulphate chains are synthesized on it, and it is then rapidly secreted from the cell. Proteoglycan produced by cultures incubated in the presence of cycloheximide and labelled with [35S]sulphate showed an increase with time of both the average proteoglycan size and the length of the constituent chondroitin sulphate chain. However, the proportion of synthesized proteoglycans able to form stable aggregates did not alter.  相似文献   

8.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

9.
Incorporation of sulfate into alcian blue-precipitable glycosaminoglycan of 12-day-old chick embryo sterna is stimulated by addition, separately or together, of normal human serum and physiological concentrations of thyroid hormones (Audhya, T.K., and Gibson, K.D. (1975) Proc. Natl. Acad, Sci. U. S. A. 72, 604--608). We present evidence that this stimulation is due to increased synthesis of at least one proteoglycan, with minor alterations in the size and chemical composition of the glycosaminoglycans. Pulse-chase experiments showed no detectable loss of label during the chase, in control sterna or sterna incubated with serum and L-3,5,3'-triiodothyronine; thus, all incorporation was the result of synthesis of glycosaminoglycans. In double-label experiments, with 35SO4(2-) and [3H]acetate, the molar ratio of 3H and 35S incorporated into glycosaminoglycans was changed little, if at all, by addition of serum or triiodothyronine or both, at concentrations which increased incorporation up to 2-fold. Glycosaminoglycans isolated from these and other incubations gave similar elution patterns from agarose columns, and identical electrophoretic patterns on cellulose acetate. Digestion with chondroitinase ABC (chondroitin ABC lyase; EC 4.2.2.4.) showed that incorporation was into chondroitin sulfate and possibly hyaluronic acid, and that the proportions of non-sulfated, 4-sulfated, and 6-sulfated disaccharide units differed little between stimulated and unstimulated sterna. Incorporation of [3H]serine into glycosaminoglycans from papain digest of sterna paralleled incorporation of 35SO4(2-), and indicated a number average molecular weight between 21,000 and 25,000 for the newly synthesized chondroitin sulfate. This value was confirmed by gel filtration chromatography, which also showed that the average molecular weight of the newly synthesized chondroitin sulfate decreased up to 15% under conditions of 2-fold stimulation. Proteoglycans were extracted from sterna incubated with [3H]serine and 35SO4(2-) and analyzed by isopycinic centrifugation in CsCl and by zone sedimentation in a sucrose gradient. A major proteoglycan fraction could be separated by either method. Incorporation of both isotopes into this proteoglycan fraction, and into glycosaminoglycans isolated after papain digestion, was stimulated in a coordinate manner. Almost identical results were obtained with both separation techniques. The results indicate that the synthesis of the major proteoglycan, and probably also of a minor one, is stimulated by serum and triiodothyronine.  相似文献   

10.
Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan-35SO4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin-35SO4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs were taken up by kidneys more avidly than was free [35S]sulfate. These 35S-GAGs were degraded and reutilized in the synthesis of chondroitin-35SO4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis.  相似文献   

11.
Balb/c 3T3 cells synthesize 5--10 times more 35SO2/4- -labeled extracellular proteoglycan per cell than do Balb/c 3T3 cells transformed by SV40 (SV3T3). The extracellular 35SO2/4- -labeled proteoglycans of the Balb/c 3T3 and SV3T3 cells differ markedly in their acid mucopolysaccharide composition. Extracellular Balb/c 3T3 proteoglycans contain about 70--80% chondroitin sulfate, most of which is chondroitin 4-sulfate, and small amounts of heparan sulfate and/or heparin. On the other hand, extracellular SV3T3 proteoglycans contain 65-75% heparan sulfate and/or heparin and less than 15% chondroitin sulfate. Analysis of extracellular 35SO2/4- -labeled proteoglycan by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that Balb/c 3T3 alone synthesizes a class of proteoglycans capable of migrating in a 10% separating gel. This class of proteoglycans, designated as fraction C, accounts for up to 45% of the total extracellular Balb/c 3T3 35 SO2/4- -labeled proteoglycans and contains chondroitin sulfate extracellular SV3T3 proteoglycans. The absence of this and other classes of chondroitin sulfate-containing proteoglycans can account for the 5-10-fold decreased synthesis of 35SO2/4- -labeled proteoglycans by SV3T3 cells when compared to Balb/c 3T3 cells.  相似文献   

12.
Proteoglycans synthesized by rat myoblasts L6J1 in culture were isolated using sorbent Q-Sepharose from culture medium, extracellular matrix (ECM), and cells. Elution of the sorbed material in a NaCl gradient separated proteoglycans from the bulk of proteins eluted at low concentration of the salt. Four fractions (fractions I-IV) were obtained for each component of the cell culture, including two proteoglycan fractions for the ECM and culture medium and one fraction for the myoblasts. Proteoglycans of the culture medium were virtually completely represented by proteoglycans of fetal calf serum. With enzymes chondroitinase ABC and heparinase III chondroitin/dermatan sulfate proteoglycans were shown to prevail in all components of the myoblast culture. The core proteins of proteoglycans were characterized by electrophoresis.  相似文献   

13.
Chick lens epithelial cells were cultured on plastic and type IV collagen substrata, and the confluent cultures were labeled continuously with [35S]sulfate for 20 h. Intact lenses were also labeled in the same way. 35S-Proteoglycans isolated from those cultures were compared for their molecular sizes and glycosaminoglycan compositions. The results have shown that: 1) Proteoglycans synthesized by cells on type IV collagen were significantly smaller than those by cells on plastic. 2) Proteoglycans of intact lens showed a broad distribution of molecular size and contained a high proportion of chondroitin sulfate in the medium fraction compared to those of the two cell cultures. In order to explain such differences between proteoglycans from cultures, label-chase experiments with [35S]sulfate were done for proteoglycans synthesized. 35S-Proteoglycans isolated at each chase time 0, 2.5, and 17 h) were compared and the following results were found: 1) The cell layers of both "plastic" and "type IV collagen" cultures contained glycosaminoglycan species predominantly at each chase time rather than proteoglycans. 2) Changes in the glycosaminoglycan compositions of medium fractions of cell cultures were observed during the chase period; in medium of the "plastic" culture, proteoheparan sulfate increased with chase time, whereas in medium of the "type IV collagen" culture, chondroitin sulfate glycosaminoglycan (not proteoglycan) increased with chase time. 3) In intact lens culture, lens capsule fraction at every chase time contained a proteoglycan unique in molecular size, which was not found in cell culture fractions. 4) All fractions from intact lens cultures contained a higher content of chondroitin sulfate at every chase time than the respective fractions from cell cultures. These results suggest that adhesion of the cells to type IV collagen or lens capsule influences the degradation and secretion of proteoglycans. In addition, they can account partially for the above-described differences in molecular sizes and glycosaminoglycan compositions between 35S-proteoglycans from various cultures continuously labeled with [35S]sulfate.  相似文献   

14.
A biochemical analysis has been carried out of metabolically labelled proteoglycans and glycosaminoglycans synthesized by a haemopoietic multipotential stem cell line, FDCP-mix. The only proteoglycan identified in these multipotential cells was a homogeneous component that contained chondroitin 4-sulphate chains (Mr approximately 10,000) arranged in close proximity in a proteinase-resistant domain of the protein core. Small quantities of free chondroitin 4-sulphate were also detected. Following a 48 h incubation with Na2 35SO4 the majority of the 35S-radiolabelled proteoglycans (approximately 80%) were associated with the cells, mainly in an intracellular compartment, and the remaining 20% were in the culture medium. Pulse-chase studies demonstrated two turnover pathways for the newly synthesized cellular proteoglycans. In the minor pathway, the proteoglycans were secreted rapidly into the medium without any discernable structural modification. In the major pathway the proteoglycans seemed to be transferred into a storage compartment from which the intact macromolecules were not secreted. Eventually, these proteoglycans were degraded to yield free polysaccharide chains and these chains were then released into the medium, but only at a relatively slow rate. There was very little intracellular degradation of chondroitin sulphate chains. The pathway to polysaccharide secretion was a slow stepwise process with a time-lag of about 5 h between proteoglycan synthesis and the appearance of free chondroitin sulphate and a second time-lag, also of about 5 h, before these chains began to be secreted. The existence of separate secretory pathways for proteoglycans and chondroitin sulphate chains is an interesting characteristic that seems to distinguish proteoglycan metabolism in primitive multipotent stem cells from related metabolic processes in mature haemopoietic cells.  相似文献   

15.
Confluent cultures of rat muscle fibroblastic cells respond by increased glycosaminoglycan (GAG) synthesis when cultured in medium containing a solubilized bone matrix fraction (SBM) at a concentration of 100 micrograms/ml. The metabolism of the GAG associated with the cell pellet, the cell surface and the tissue culture medium fractions was studied, in the presence and absence of SBM, by measuring the incorporation of radioactivity from [3H]glucosamine and [35S]SO4 into the isolated GAG. Net synthesis of hyaluronic acid and of chondroitin sulfate in the medium fraction increased more rapidly in cultures containing SBM compared to controls, and the accumulation of labelled GAG in the medium of the treated cultures was approximately linear with respect to the length of incubation. The addition of SBM also resulted in increased incorporation of 3H and of 35S into the GAG of the cell surface and cell pellet fractions. In these fractions, stimulation of incorporation of radioactivity occurred in two waves: an early, relatively minor increase and a later relatively major increase. The relatively major stimulation of radioactivity into the GAG of the cell surface fraction occurred between 24 and 48 h and was independent of any apparent effect of serum.  相似文献   

16.
35SO42- - and [3H]-leucine-labelled proteoglycans were isolated from the medium of a fibroblast culture, from an EDTA extract of the monolayer, and from consecutive dithiothreitol and guanidine hydrochloride extracts of the cells. Proteoglycans of different sizes were isolated from the extracts by gel chromatography on Sepharose 4B. In the medium and the EDTA extract the largest proteoglycans contained only 35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparan [35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparin [35S]sulphate. The galactosaminoglycan-containing proteoglycans of the various extracts were separated into a larger component, containing chondroitin sulphate-like side chains, and a smaller component, containing dermatan sulphate. The larger proteoglycan of the medium showed reversible association-dissociation behaviour when chromatographed on Sepharose CL2B in phosphate-buffered saline and 4M-guanidine hydrochloride respectively. This property remained after removal of extraneous proteins by CsCl-density-gradient centrifugation in guanidine hydrochloride. The association was markedly increased by the addition of high-molecular-weight hyaluronic acid.  相似文献   

17.
Metabolically 35S-labeled proteoglycans were isolated from cell-associated matrices and media of confluent cultures of human normal transitional epithelial cells and HCV-29T transitional carcinoma cells. On Sepharose CL-4B columns, the cell-associated proteoglycans synthesized from both cell types separated into three identical size classes, termed CI, CII, and CIII. Normal epithelial cell C-fractions eluted in a 22:34:45 proportion and contained 64%, 64%, and 72% heparan sulfate, whereas corresponding HCV-29T fractions eluted in a 29:11:60 proportion, and contained 91%, 77%, and 70% heparan sulfate, respectively. Medium proteoglycans from normal cells separated into two size classes in a proportion of 6:94 and were composed of 35% and 50% heparan sulfate. HCV-29T medium contained only one size class of proteoglycans consisting of 23% heparan sulfate. The remaining percentages were accounted for by chondroitin/dermatan sulfate. On isopycnic CsCl gradients, proteoglycan fractions from normal cells had buoyant densities that were higher than the corresponding fractions from HCV-29T cells. DEAE-Sephacel chromatography showed that cell and medium associated heparan sulfate from HCV-29T cells was consistently of lower charge density (undersulfated) than that from normal epithelial cells. In contrast, the chondroitin/dermatan sulfate of HCV-29T was of a charge density similar to that of normal cells. These as well as other structural and compositional differences in the proteoglycan may account, at least in part, for the altered behavioral traits of highly invasive carcinoma cells.  相似文献   

18.
19.
We found that chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase were released into the culture medium from the cultured chick embryo chondrocytes. Since the release of the sulfotransferases was observed not only in serum-supplemented medium but also in serum-free medium, the released sulfotransferases were unlikely to be derived from serum. Addition of ascorbate to the serum-free medium supported the continuous release of the sulfotransferases. Monensin, which is known to cause dilatation of the Golgi apparatus and to inhibit sulfation of proteoglycan, was found to affect the release of the sulfotransferases. In the presence of 10(-6) M monensin, chondroitin 6-sulfotransferase activity in the cell layer was decreased to less than one tenth of the control, and the rate of the release of the activity became much smaller than the control after the initial rapid release. The activity of chondroitin 4-sulfotransferase was also affected by monensin, but the reduction of the chondroitin 4-sulfotransferase activity in the cell layer was not so great as the reduction of chondroitin 6-sulfotransferase activity. Unlike to the microsomal sulfotransferases, both chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase released into the culture medium were retained in the soluble fraction after centrifugation at 100,000 x g for 60 min, and were not activated by detergent. pH optimum and requirements for sulfhydryl compounds of the released sulfotransferases were similar to those observed previously in the chondroitin sulfotransferases from chick embryo cartilage and from cultured chick embryo chondrocytes. These results suggest that chondroitin sulfotransferases, which are localized in the Golgi apparatus, may be secreted to the extracellular space in a soluble form under the culture conditions.  相似文献   

20.
The structure, biosynthesis, and metabolism of proteoglycans in the HL-60 human promyelocytes were studied by metabolic labeling in culture with [35S]sulfate, [3H]glucosamine, [3H]serine, and [3H]leucine. These cells synthesize a single predominant species of intracellular proteoglycan with an approximate molecular weight of 100,000. The cells contain about 1 microgram of proteoglycan/million cells. The proteoglycan is turned over within the cells in two apparent pools with half-lives of about 0.6 and 27 h, respectively. The fast pool represents secretion into medium in an apparently intact form, whereas the slow pool represents intracellular degradation to free chondroitin sulfate chains and smaller fragments. The proteoglycan contains a protein core with an apparent Mr on gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of about 20,000-30,000. To the core protein are attached an average of six or seven chondroitin sulfate chains, each with an Mr of about 10,000. The chondroitin sulfate chains contain approximately 85% 4-sulfated and approximately 15% nonsulfated disaccharides. The chondroitin sulfate attachment region of the core protein is essentially resistant to trypsin and elastase, whereas the remainder of the protein core is readily degraded by proteases. The size of the chondroitin sulfate attachment region peptide generated by trypsin was estimated to be approximately 5 kDa. Based on the molecular size, distribution of amino acids, protease susceptibility, and the extent of O-glycosylation, we propose that the intracellular proteoglycan characterized in this study is the translation product of a proteoglycan gene reported to be present in these cells (Stevens, R.L., Avraham, S., Gartner, M.C., Bruns, G.A., Austen, K.E., and Weis, J.H. (1988) J. Biol. Chem. 263, 7287-7291).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号