首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
We examined the distribution of N-formylkynurenine, a product of the dioxidation of tryptophan residues in proteins, throughout the human heart mitochondrial proteome. This oxidized amino acid is associated with a distinct subset of proteins, including an over-representation of complex I subunits as well as complex V subunits and enzymes involved in redox metabolism. No relationship was observed between the tryptophan modification and methionine oxidation, a known artifact of sample handling. As the mitochondria were isolated from normal human heart tissue and not subject to any artificially induced oxidative stress, we suggest that the susceptible tryptophan residues in this group of proteins are "hot spots" for oxidation in close proximity to a source of reactive oxygen species in respiring mitochondria.  相似文献   

2.
T Okajima  Y Kawata  K Hamaguchi 《Biochemistry》1990,29(39):9168-9175
The role of tryptophan residues in the stability of proteins was studied by ozone oxidation, which causes a small change in the tryptophan side chain. Trp 187 of the constant fragment of a type lambda immunoglobulin light chain, Trp 59 of ribonuclease T1, and Trp 62 of hen egg white lysozyme were oxidized specifically by ozone to N'-formylkynurenine or kynurenine. Judging from their circular dichroic and fluorescence spectra, these modified proteins were found to be the same as those of the respective intact proteins. However, even the slight modification of a single tryptophan residue produced a large decrease in the stability of these proteins to guanidine hydrochloride and heat. The smaller the extent of exposure of the tryptophan residue, the greater the effect of the modification on the stability. The formal kinetic mechanism of unfolding and refolding by guanidine hydrochloride of the CL fragment was not altered by tryptophan oxidation, but the rate constants for unfolding and refolding changed. The thermal unfolding transitions were analyzed to obtain the thermodynamic parameters. The enthalpy and entropy changes for the modified proteins were larger than the respective values for the intact proteins.  相似文献   

3.
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.  相似文献   

4.
The cellulose-binding domain (CBDCex) of the mixed function glucanase-xylanase Cex from Cellulomonas fimi contains five tryptophans, two of which are located within the beta-barrel structure and three exposed on the surface (Xu GY et al., 1995, Biochemistry 34:6993-7009). Although all five tryptophans can be oxidized by N-bromosuccinimide (NBS), stopped-flow measurements show that three tryptophans react faster than the other two. NMR analysis during the titration of CBDCex with NBS shows that the tryptophans on the surface of the protein are fully oxidized before there is significant reaction with the two buried tryptophans. Additionally, modification of the exposed tryptophans does not affect the conformation of the backbone of CBDCex, whereas complete oxidation of all five tryptophans denatures the polypeptide. The modification of the equivalent of one and two tryptophans by NBS reduces binding of CBDCex to cellulose by 70% and 90%, respectively. This confirms the direct role of the exposed aromatic residues in the binding of CBDCex to cellulose. Although adsorption to cellulose does afford some protection against NBS, as evidenced by the increased quantity of NBS required to oxidize all of the tryptophan residues, the polypeptide can still be oxidized completely when adsorbed. This suggests that, whereas the binding appears to be irreversible overall [Ong E et al., 1989, Bio/Technology 7:604-607], each of the exposed tryptophans interacts reversibly with cellulose.  相似文献   

5.
6.
Membrane proteins have a significantly higher Trp content than do soluble proteins. This is especially true for the M and L subunits of the photosynthetic reaction center from purple bacteria. The Trp residues are not uniformly distributed through the membrane but are concentrated at the periplasmic side of the complex. In addition, Trp residues are not randomly aligned. Within the protein subunits, many form hydrogen bonds with carbonyl oxygens of the main chain, thereby stabilizing the protein. On the surface of the molecule, they are correctly positioned to form hydrogen bonds with the lipid head groups while their hydrophobic rings are immersed in the lipid part of the bilayer. These observations suggest that Trp residues are involved in the translocation of protein through the membrane and that following translocation, Trp residues serve as anchors on the periplasmic side of the membrane.  相似文献   

7.
Tryptophan is readily oxidized to oxindolylalanine (2-hydroxytryptophan) in good yield on treatment in acetic acid solution with a mixture of dimethyl sulfoxide (DMSO) and concentrated aqueous HCl at room temperature. Other sulfoxides can be used in combination with HCl; for example, methionine sulfoxide reacts with an equimolar amount of tryptophan to give high yields of methionine and oxindolylalanine. Methionine and cysteine are quantitatively oxidized by DMSO/HCl to methionine sulfoxide and cystine, respectively. The tryptophan containing peptides LRF (luteinizing hormone-releasing factor), somatostatin, valine-gramicidin A and ACTH 1-24 were each treated with the DMSO/HCl reagent in acetic acid solution and the corresponding oxindolylalanine-derivatives isolated in over 90% yield after chromatography. The identity and purity of the derivatives were established on the basis of ultraviolet spectral characteristics and quantitative amino acid analysis of the oxindolylalanine content of acid hydrolyzates of the oxidized peptides with 3N-p-toluenesulfonic acid at 110 degrees for 24 h. The results indicate that modification of tryptophan peptides with DMSO/HCl provides a useful procedure, which seems superior to previously used reagents. In addition, the method could be well applied to other indoles of biological and pharmacological interest.  相似文献   

8.
Selective oxidation of methionine residues in proteins.   总被引:7,自引:0,他引:7  
Methionine residues in peptides and proteins were oxidized to methionine sulfoxides by mild oxidizing reagents such as chloramine-T and N-chlorosuccinimide at neutral and slightly alkaline pH. With chloramine-T cysteine was also oxidized to cystine but no other amino acid was modified; with N-chlorosuccinimide tryptophans were oxidized as well. In peptides and denaturated proteins all methionine residues were quantitatively oxidized, while in native proteins only exposed methionine residues could be modified. Extent of oxidation of methionine residues was determined by quantitative modification of the unoxidized methionine residues with cyanogen bromide (while methionine sulfoxide residues remained intact), followed by acid hydrolysis and amino acid analysis. Methionine was determined as homoserine and methionine sulfoxide was reduced back to methionine. Sites of oxidation were identified in a similar way by cleaving the unoxidized methionyl peptide bonds with cyanogen bromide, followed by quantitative end-group analysis of the new amino-terminal amino acids (by an automatic sequencer).  相似文献   

9.
A procedure is described to determine tryptophan residues in proteins using a tryptophan reagent, 2-hydroxy-5-nitrobenzyl bromide. The method involves the treatment of the unfolded protein with the reagent in 9 m urea at acid pH; incubation of the mixture at room temperature for 2 hr and the removal of the excess reagent by centrifugation and gel filtration. The amount of tryptophan in a protein is determined from the optical density of the labeled protein at 280 and 410 nm, and from the known optical density of 1 mg/ml of the protein at 280 nm and of the reagent at 280 and 410 nm. The efficacy of the method was tested with eight proteins whose tryptophan content is known.  相似文献   

10.
Selective chemical modification of arginyl residues   总被引:2,自引:0,他引:2  
T P King 《Biochemistry》1966,5(11):3454-3459
  相似文献   

11.
Steady-state and lifetime-resolved fluorescence anisotropy measurements of protein fluorescence were used to investigate the depolarizing motions of tryptophan residues in proteins. Lifetime resolution was achieved by oxygen quenching. The proteins investigated were carbonic anhydrase, carboxypeptidase A, alpha-chymotrypsin, trypsin, pepsin, and bovine and human serum albumin. When corrected for overall protein rotation, the steady state anisotropies indicate that, on the average, the tryptophan residues in these proteins rotate 29 degrees +/- 6 degrees during the unquenched excited state lifetimes of these proteins, which range from 1.7 to 6.1 ns. The lifetime-resolved anisotropies reveal correlation times for these displacements ranging from 1 to 12 ns. On the average these correlation times are tenfold shorter than that expected for overall protein rotation. We conclude that the tryptophan residues in these proteins display remarkable freedom of motion within the protein matrix, which implies that these matrices are highly flexible on the nanosecond time scale.  相似文献   

12.
Selective oxidation of methionine residues in prion proteins.   总被引:5,自引:0,他引:5  
Prion proteins are central to the pathogenesis of several neurodegenerative diseases through the postulated conversion of the endogenous cellular isoform (PrPc) into a pathogenic isoform (PrPSc). Although the cellular function of normal prion protein remains unresolved a number of studies have shown that prion proteins may be involved in the cellular response to oxidative stress. Here, using purified recombinant sources of mouse and chicken PrP refolded in the presence of copper (II) we show that the methionine residues of the protein are uniquely susceptible to oxidation. We suggest that Met residues may form an essential part of the mechanism of the antioxidant activity exhibited by normal prion protein.  相似文献   

13.
Reaction of alpha-mannosidase (alpha-D-mannoside mannohydrolase, EC 3.2.1.24) from Phaseolus vulgaris with N-bromosuccinimide or 2-hydroxy-5-nitrobenzyl bromide- resulted in loss of enzyme activity. Spectral absorption and fluorescence studies, as well as amino acid analysis, suggested that only tryptophan residues had been modified. No change in conformation could be detected by density gradient ultracentrifugation or circular dichroism of alpha-mannosidase modified by N-bromosuccinimide to virtually zero enzyme activity. The inhibition was partly offset by the substrate analogue alpha-methyl-D-mannoside and the competitive inhibitor mannono-1,4-lactone. Concomitantly, two tryptophan residues fewer were oxidized per molecule. After modification V was reduced, while Km seemed unchanged. Further, there was found evidence for the enzyme having a secondary structure dominated by beta-pleated sheets.  相似文献   

14.
We have used optically detected magnetic resonance (ODMR) to characterize the degree of solvent availability of the tryptophan residues in lysozyme that are likely to be responsible for the observed phosphorescence. From the phosphorescence spectra, ODMR zero-field splittings (zfs), and ODMR line widths, we concur with the X-ray structure [Blake, C. C., Mair, G. A., North, A. C. T., Phillips, D. C., & Sarma, V. R. (1967) Proc. R. Soc. London, ser. B 167, 365-377] that Trp-62 behaves as an exposed residue and Trp-108 is buried. In addition, we present evidence that ODMR can be used in conjunction with conventional phosphorescence to evaluate the degree of order in the microenvironments of tryptophan in a protein containing several tryptophans. By the specific modification of residues Trp-62 and Trp-108, we have identified those portions of the ODMR lines in the native enzyme that are due to those specific residues. Barring major enzyme conformational changes in the vicinity of unmodified tryptophan residues when Trp-62 or Trp-108 are selectively modified, we find that Trp-108 dominates both the phosphorescence and the ODMR signals in native lysozyme. The results are discussed in view of previous fluorescence findings.  相似文献   

15.
16.
17.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

18.
Rotational freedom of tryptophan residues in proteins and peptides   总被引:4,自引:0,他引:4  
We studied the rotational motions of tryptophan residues in proteins and peptides by measurement of steady-state fluorescence anisotropies under conditions of oxygen quenching. By fluorescence quenching we can shorten the fluorescence lifetime and thereby decrease the average time for rotational diffusion prior to fluorescence emission. This method allowed measurement of rotational correlation times ranging from 0.03 to 50 ns, when the unquenched fuorescence lifetimes are near 4 ns. A wide range of proteins and peptides were investigated with molecular weights ranging from 200 to 80 000. Many of the chosen substances possessed a single tryptophan residue to minimize the uncertainties arising from a heterogeneous population of fluorophores. In addition, we also studied a number of multi-tryptophan proteins. Proteins were studied at various temperatures, under conditions of self-association, and in the presence of denaturants. A wide variety of rotational correlation times were found. As examples we note that the single tryptophan residue of myelin basic protein was highly mobile relative to overall protein rotation whereas tryptophan residues in human serum albumin, RNase T1, aldolase, and horse liver alcohol dehydrogenase were found to be immobile relative to the protein matrix. These results indicate that one cannot generalize about the extent of segmental mobility of the tryptophan residues in proteins. This physical property of proteins is highly variable between proteins and probably between different regions of the same protein.  相似文献   

19.
Chemical protein modifications facilitate the investigation of natural posttranslational protein modifications and allow the design of proteins with new functions. Proteins can be modified at a late stage on amino acid side chains by chemical methods. The indole moiety of tryptophan residues is an emerging target of such chemical modification strategies because of its unique reactivity and low abundance. This review provides an overview of the recently developed methods of tryptophan modification at the peptide and protein levels.  相似文献   

20.
The transmembrane domains of integral membrane proteins show an astounding accumulation of tyrosine and tryptophan residues, especially in the region of the highest lipid density. We found that these residues perform vital antioxidant functions inside lipid bilayers and protect cells from oxidative destruction. First, tyrosine- and tryptophan-containing peptides representing stretches from the transmembrane domains of different integral membrane proteins, including presenilin and the cystic fibrosis transmembrane conductance regulator, prevent oxidative lysis in clonal and primary cells. Second, long-chain acylated tyrosine and tryptophan, but not phenylalanine or short-chain acylated derivatives, are potent inhibitors of lipid peroxidation and oxidative cell death. The antioxidant functions of tyrosine and tryptophan may provide a specific explanation for (a) their unique transmembrane distribution pattern and (b) the high vulnerability of low-protein neuronal membranes to oxidative stress, as seen in neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号