首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown in dogs that much of the increase in lung resistance (RL) after induced constriction can be attributed to increases in tissue resistance, the pressure drop in phase with flow across the lung tissues (Rti). Rti is dependent on lung volume (VL) even after induced constriction. As maximal responses in RL to constrictor agonists can also be affected by changes in VL, we questioned whether changes in the plateau response with VL could be attributed in part to changes in the resistive properties of lung tissues. We studied the effect of changes in VL on RL, Rti, airway resistance (Raw), and lung elastance (EL) during maximal methacholine (MCh)-induced constriction in 8 anesthetized, paralyzed, open-chest mongrel dogs. We measured tracheal flow and pressure (Ptr) and alveolar pressure (PA), the latter using alveolar capsules, during tidal ventilation [positive end-expiratory pressure (PEEP) = 5.0 cmH2O, tidal volume = 15 ml/kg, frequency = 0.3 Hz]. Measurements were recorded at baseline and after the aerosolization of increasing concentrations of MCh until a clear plateau response had been achieved. VL was then altered by changing PEEP to 2.5, 7.5, and 10 cmH2O. RL changed only when PEEP was altered from 5 to 10 cmH2O (P < 0.01). EL changed when PEEP was changed from 5 to 7.5 and 5 to 10 cmH2O (P < 0.05). Rti and Raw varied significantly with all three maneuvers (P < 0.05). Our data demonstrate that the effects of VL on the plateau response reflect a complex combination of changes in tissue resistance, airway caliber, and lung recoil.  相似文献   

2.
Previous studies have shown that lung challenge with smooth muscle agonists increases tissue viscance (Vti), which is the pressure drop between the alveolus and the pleura divided by the flow. Passive inflation also increases Vti. The purpose of the present study was to measure the changes in Vti during positive end-expiratory pressure- (PEEP) induced changes in lung volume and with a concentration-response curve to methacholine (MCh) in rabbits and to compare the effects of induced constriction vs. passive lung inflation on tissue mechanics. Measurements were made in 10 anesthetized open-chest mechanically ventilated New Zealand male rabbits exposed first to increasing levels of PEEP (3-12 cmH2O) and then to increasing concentrations of MCh aerosol (0.5-128 mg/ml). Lung elastance (EL), lung resistance (RL), and Vti were determined by adjusting the equation of motion to tracheal and alveolar pressures during tidal ventilation. Our results show that under baseline conditions, Vti accounted for a major proportion of RL; during both passive lung inflation and MCh challenge this proportion increased progressively. For the same level of change in EL, however, the increase in Vti was larger during MCh challenge than during passive inflation; i.e., the relationship between energy storage and energy dissipation or hysteresivity was dramatically altered. These results are consistent with a MCh-induced change in the intrinsic rheological properties of lung tissues unrelated to lung volume change per se. Lung tissue constriction is one possible explanation.  相似文献   

3.
Six anesthetized paralyzed open-chest New Zealand White male rabbits were studied to obtain the maximal or plateau response to the inhalation of methacholine. Tracheal flow, tracheal pressure, and, by use of alveolar capsules, alveolar pressure were measured during tidal mechanical ventilation. We calculated total lung resistance (RL), tissue viscance (Vti), and lung elastance by digital fitting of the equation of motion to changes in tracheal and alveolar pressure. Airways resistance (Raw) was calculated as RL-Vti. Measurements were made under control conditions and after delivery of increasing concentrations of methacholine aerosol (0.5-128 mg/ml). We found that Vti accounted for the major proportion of RL both under control conditions (64.5 +/- 15.9%) and after methacholine-induced constriction (83.6 +/- 11.8%). There was a significant negative correlation between logarithmic percent change in Raw and Vti at the onset of the plateau response (r = 0.973). Furthermore, the slope of the relationship between log change in Vti and log change in Raw during the plateau response was strongly correlated with the degree of tissue response at the onset of the plateau (r = 0.957). Vti was positively correlated with lung elastance both before and during the plateau response (r = 0.946). We propose that the negative correlation between tissue resistance and Raw at the level of the plateau is consistent with a model of a mechanically interdependent lung, where decreases in airway caliber are limited by the constriction of the surrounding parenchyma.  相似文献   

4.
A comparison of the dose-response behavior of canine airways and parenchyma   总被引:1,自引:0,他引:1  
We compared the histamine responsiveness of canine airways and parenchymal tissues in six anesthetized paralyzed open-chest mongrel dogs, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue viscance (Vti). Pressure was measured during tidal breathing (frequency was 0.3 Hz) at the trachea and in three alveolar regions by use of alveolar capsules. Measurements were taken before and after the delivery of increasing concentrations of aerosolized histamine (0.1-30 mg/ml). We found that Vti accounted for 78 +/- 8% of RL under base-line conditions; this proportion remained relatively constant throughout the histamine concentration-response curve. There was a significant correlation between percent change in Vti and percent change in Raw at all levels of histamine-induced constriction (P less than 0.001). Moreover, the sensitivity of the tissues and airways (defined as the concentration of histamine required to double resistance) was remarkably similar. We conclude that, at this frequency of ventilation, Vti accounts for the major portion of RL both under base-line conditions and after histamine-induced constriction. Although increases in RL cannot be attributed solely to events occurring in the airways, the close correlation between changes in Raw and Vti and the similar sensitivities of the two support the use of indexes reflecting changes in airway caliber as an indicator of overall lung histamine responsiveness.  相似文献   

5.
We examined the effects of lung volume change and volume history on lung resistance (RL) and its components before and during induced constriction. Eleven subjects, including three current and four former asthmatics, were studied. RL, airway resistance (Raw), and, by subtraction, tissue viscance (Vtis) were measured at different lung volumes before and after a deep inhalation and were repeated after methacholine (MCh) aerosols up to maximal levels of constriction. Vtis, which average 9% of RL at base line, was unchanged by MCh and was not changed after deep inhalation but increased directly with lung volume. MCh aerosols induced constriction by increasing Raw, which was reversed by deep inhalation in inverse proportion to responsiveness. such that the more responsive subjects reversed less after a deep breath. Responsiveness correlated directly with the degree of maximal constriction, as more responsive subjects constricted to a greater degree. These results indicate that in humans Vtis comprises a small fraction of overall RL, which is clearly volume-dependent but unchanged by MCh-induced constriction and unrelated to the degree of responsiveness of the subject.  相似文献   

6.
Frequency-dependent characteristics of lung resistance (RL) and elastance (EL) are sensitive to different patterns of airway obstruction. We used an enhanced ventilator waveform (EVW) to measure inspiratory RL and EL spectra in ventilated patients during thoracic surgery. The EVW delivers an inspiratory flow waveform with enhanced spectral excitation from 0.156 to 8.1 Hz. Estimates of the coefficients in a trigonometric approximation of the EVW flow and transpulmonary pressure inspirations yielded inspiratory RL and EL spectra. We applied the EVW in a group with mild obstruction undergoing various thoracoscopic procedures (n = 6), and another group with severe chronic obstructive pulmonary disease undergoing lung volume reduction surgery (n = 8). Measurements were made at positive end-expiratory pressure (PEEP) of 0, 3, and 6 cmH(2)O. Inspiratory RL was similar in both groups despite marked differences in spirometry. The chronic obstructive pulmonary disease patients demonstrated a pronounced frequency-dependent increase in inspiratory EL consistent with severe heterogeneous peripheral airway obstruction. PEEP appears to have beneficial effects by reducing peripheral airway resistance. Lung volume reduction surgery resulted in increased inspiratory RL and EL at all frequencies and PEEPs, possibly due to loss of diseased lung tissue, pulmonary edema, increased mechanical heterogeneity, and/or an improvement in airway tethering.  相似文献   

7.
Decorin (Dcn), a small leucine-rich proteoglycan, is present in the extracellular matrix of the airways and lung tissues, contributes to lung mechanical properties, and its deposition is altered in asthma. The effect of Dcn deficiency on airway parenchymal interdependence was examined during induced bronchoconstriction. Studies were performed in C57Bl/6 mice in which the Dcn gene was disrupted by targeted deletion (Dcn(-/-)) and in wild-type controls (Dcn(+/+)). Mice were mechanically ventilated, and respiratory system impedance was measured during in vivo ventilation at positive end-expiratory pressure (PEEP) = 2 and 10 cmH(2)0, before and after aerosol delivery of methacholine (MCh). Length vs. tension curves in isolated tracheal rings were measured in vitro. Dcn distribution in +/+ mice airways was characterized by immunofluorescence; differences in collagen structure in Dcn(+/+) and Dcn(-/-) mouse lungs was examined by electron microscopy. MCh caused similar increases in airway resistance (Raw) and tissue elastance (H) in Dcn(+/+) and Dcn(-/-) mice. During MCh-induced constriction, increasing PEEP caused a decrease in Raw that was greater in Dcn(-/-) mice and a decrease in H in Dcn(-/-) mice only. Tracheal ring compliance was greater in Dcn (-/-) mice. Imaging studies showed that Dcn was deposited primarily in the airway adventitial layer in Dcn(+/+) mice; in Dcn(-/-) mice, collagen had an irregular appearance, especially in the lung periphery. These results show that lack of Dcn alters the normal interaction between airways and lung parenchyma; in asthma, changes in Dcn could potentially contribute to abnormal airway physiology.  相似文献   

8.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To better address the functional consequences of inflammation on bronchial responsiveness, we studied two groups of BALB/c mice: a nonimmunized control group (n = 8) and a group immunized and challenged with inhaled ovalbumin (n = 8). An alveolar capsule (AC) measured airway resistance (Raw(AC)) and lung elastance (EL). A forced oscillation (FO) technique independently estimated airway resistance (Raw(FO)) and a parameter H(ti) related to tissue elastance. Ovalbumin-immunized and -challenged mice had increased numbers of eosinophils in bronchoalveolar lavage and increased responsiveness to methacholine (MCh). Corresponding parameters from the AC and FO techniques were correlated: Raw(AC) vs. Raw(FO) (r = 0.76) and EL vs. H(ti) (r = 0.88, P < 0.0001 in all cases). AC and FO techniques showed significant increases in tissue elastance in response to MCh but no significant increases in airway resistance. These results demonstrated that the AC and FO techniques yield essentially equivalent results in mice, even when the lung is inhomogeneous, and that the bronchoconstrictive responses to MCh and inflammation in mice are predominantly located in the lung periphery.  相似文献   

10.
We examined the effects of lung volume on the bronchoconstriction induced by inhaled aerosolized methacholine (MCh) in seven normal subjects. We constructed dose-response curves to MCh, using measurements of inspiratory pulmonary resistance (RL) during tidal breathing at functional residual capacity (FRC) and after a change in end-expiratory lung volume (EEV) to either FRC -0.5 liter (n = 5) or FRC +0.5 liter (n = 2). Aerosols of MCh were generated using a nebulizer with an output of 0.12 ml/min and administered for 2 min in progressively doubling concentrations from 1 to 256 mg/ml. After MCh, RL rose from a base-line value of 2.1 +/- 0.3 cmH2O. 1-1 X s (mean +/- SE; n = 7) to a maximum of 13.9 +/- 1.8. In five of the seven subjects a plateau response to MCh was obtained at FRC. There was no correlation between the concentration of MCh required to double RL and the maximum value of RL. The dose-response relationship to MCh was markedly altered by changing lung volume. The bronchoconstrictor response was enhanced at FRC - 0.5 liter; RL reached a maximum of 39.0 +/- 4.0 cmH2O X 1-1 X s. Conversely, at FRC + 0.5 liter the maximum value of RL was reduced in both subjects from 8.2 and 16.6 to 6.0 and 7.7 cmH2O X 1-1 X s, respectively. We conclude that lung volume is a major determinant of the bronchoconstrictor response to MCh in normal subjects. We suggest that changes in lung volume act to alter the forces of interdependence between airways and parenchyma that oppose airway smooth muscle contraction.  相似文献   

11.
We investigated the effects of a selective beta(2)-agonist, salbutamol, and of phosphodiesterase type 4 inhibition with 4-(3-butoxy-4-methoxy benzyl)-2-imidazolidinone (Ro-20-1724) on the airway and parenchymal mechanics during steady-state constriction induced by MCh administered as an aerosol or intravenously (iv). The wave-tube technique was used to measure the lung input impedance (ZL) between 0.5 and 20 Hz in 31 anesthetized, paralyzed, open-chest adult Brown Norway rats. To separate the airway and parenchymal responses, a model containing an airway resistance (Raw) and inertance (Iaw), and a parenchymal damping (G) and elastance (H), was fitted to ZL spectra under control conditions, during steady-state constriction, and after either salbutamol or Ro-20-1724 delivery. In the Brown Norway rat, the response to iv MCh infusion was seen in Raw and G, whereas continuous aerosolized MCh challenge produced increases in G and H only. Both salbutamol, administered either as an aerosol or iv, and Ro-20-1724 significantly reversed the increases in Raw and G when MCh was administered iv. During the MCh aerosol challenge, Ro-20-1724 significantly reversed the increases in G and H, whereas salbutamol had no effect. These results suggest that, after MCh-induced changes in lung function, salbutamol increases the airway caliber. Ro-20-1724 is effective in reversing the airway narrowings, and it may also decrease the parenchymal constriction.  相似文献   

12.
The nonlinearity of lung tissues and airways was studied in six anesthetized and paralyzed open-chest dogs by means of 0.1-Hz sinusoidal volume forcing at mean transpulmonary pressures (Ptp) of 5 and 10 cmH2O. Lung resistance (RL) and elastance (EL) were determined in a 32-fold range (15-460 ml) of tidal volume (VT), both by means of spectrum analysis at the fundamental frequency and with conventional time-domain techniques. Alveolar capsules were used to separate the tissue and airway properties. A very small amplitude dependence was found: with increasing VT, the frequency-domain estimates of RL decreased by 5.3 and 14%, whereas EL decreased by 20 and 22% at Ptp = 5 and 10 cmH2O, respectively. The VT dependences of the time-domain estimates of RL were higher: 10.5 and 20% at Ptp = 5 and 10 cmH2O, respectively, whereas EL remained the same. The airway resistance increased moderately with flow amplitude and was smaller at the higher Ptp level. Analysis of the harmonic distortions of airway opening pressure and the alveolar pressures indicated that nonlinear harmonic production is moderate even at the highest VT and that VT dependence is homogeneous throughout the tissues. In three other dogs it was demonstrated that VT dependences of RL and EL were similar in situ and in isolated lungs at both Ptp levels.  相似文献   

13.
We previously demonstrated that airway responsiveness is greater in immature than in mature rabbits; however, it is not known whether there are maturational differences in the effect of transpulmonary pressure (Ptp) on airway size and airway responsiveness. The relationship between Ptp and airway diameter was assessed in excised lungs insufflated with tantalum powder. Diameters of comparable intraparenchymal airway segments were measured from radiographs obtained at Ptp between 0 and 20 cmH(2)O. At Ptp > 8 cmH(2)O, the diameters were near maximal in both groups. With diameter normalized to its maximal value, changing Ptp between 8 and 0 cmH(2)O resulted in a greater decline of airway caliber in immature than mature airways. The increases in lung resistance (RL) in vivo at Ptp of 8, 5, and 2 cmH(2)O were measured during challenge with intravenous methacholine (MCh: 0.001-0.5 mg/kg). At Ptp of 8 cmH(2)O, both groups had very small responses to MCh and the maximal fold increases in RL did not differ (1.93 +/- 0.29 vs. 2.23 +/- 0.19). At Ptp of 5 and 2 cmH(2)O, the fold increases in RL were greater for immature than mature animals (13.19 +/- 1.81 vs. 3.89 +/- 0.37) and (17.74 +/- 2.15 vs. 4.6 +/- 0.52), respectively. We conclude that immature rabbits have greater airway distensibility and this difference may contribute to greater airway narrowing in immature compared with mature rabbits.  相似文献   

14.
A single-projection X-ray technique showed an increase in functional residual capacity (FRC) in conscious mice in response to aerosolized methacholine (MCh) with little change in airway resistance (Raw) measured using barometric plethysmography (Lai-Fook SJ, Houtz PK, Lai Y-L. J Appl Physiol 104: 521-533, 2008). The increase in FRC presumably prevented airway constriction by offsetting airway contractility. We sought a more direct measure of airway constriction. Anesthetized Balb/c mice were intubated with a 22-G catheter, and tantalum dust was insufflated into the lungs to produce a well-defined bronchogram. After overnight recovery, the conscious mouse was placed in a sealed box, and bronchograms were taken at maximum and minimum points of the box pressure cycle before (control) and after 1-min exposures to 25, 50, and 100 mg/ml MCh aerosol. After overnight recovery, each mouse was studied under both room and body temperature box air conditions to correct for gas compression effects on the control tidal volume (Vt) and to determine Vt and Raw with MCh. Airway diameter (D), FRC, and Vt were measured from the X-ray images. Compared with control, D decreased by 24%, frequency decreased by 35%, FRC increased by 120%, and Raw doubled, to reach limiting values with 100 mg/ml MCh. Vt was unchanged with MCh. The limiting D occurred near zero airway elastic recoil, where the maximal contractility was relatively small. The conscious mouse adapted to MCh by breathing at a higher lung volume and reduced frequency to reach a limit in constriction.  相似文献   

15.
We assessed the relative changes in airways and lung tissue with bronchoconstriction, and the changes in each during and following a deep inhalation (DI). We partitioned pulmonary resistance (RL) into airway (Raw) and tissue (Vtis) components using alveolar capsules in 10 anesthetized, paralyzed, and open-chested dogs ventilated sinusoidally with 350-ml breaths at 1 Hz. We made measurements before and during bronchoconstriction induced by vagal stimulation or inhalation of histamine or prostaglandin F2 alpha (PGF2 alpha), each of which decreased dynamic compliance by approximately 40%. With histamine and PGF2 alpha the rise in RL was predominantly due to Vtis. With vagal stimulation there was a relatively greater increase in Raw than Vtis. At higher lung volumes, Vtis increases offset falls in Raw, producing higher RL at these volumes before and during constriction with PGF2 alpha and histamine. During constriction with vagal stimulation, the fall in Raw with inflation overrode the rise in Vtis, resulting in a lower RL at the higher compared with the lower lung volume. The changes seen after a DI in the control and constricted states were due to alterations in tissue properties, both viscous and elastic. However, the relative hysteresis of the airways and parenchyma were equal, since Raw, our index of airway size, was unchanged after a DI.  相似文献   

16.
Toinvestigate whether changes of tissue resistance (Rti) duringmethacholine (MCh)-induced constriction correspond to an intrinsicmechanism or are an artifact of increased airways inhomogeneity, rabbits were studied after exposure to air(n = 7) or 1.5 parts/million O3(n = 6). Animals were anesthetized andmechanically ventilated. Tracheal flow and pressure (Ptr) and fouralveolar capsule pressures (Pcap) were measured during 3 min afteradministration of an intrajugular bolus of 0.8 mg/ml MCh. By adjustmentof the equation of motion [P(t) = E · V(t) + R · dV(t)/dt + P0] [whereP(t), V(t), and dV(t)/dt are pressure, volume, and flow as a function of time, respectively, Eis elastance, R is resistance, and P0 is end-expiratorypressure] to Ptr, lung resistance(RL) and dynamic elastance(EL) were determined breath bybreath. Rti and airways resistance (Raw) were determined from Pcap in phase with rate of change of pulmonary expansion. Hysteresivity () was calculated. Parallel inhomogeneity wasestimated from the coefficients of variation (CV) of every Pcap at endinspiration and end expiration. Increase in CV significantly laggedRti, RL, and . A linearrelationship between EL and Rawwas observed. Our results suggest that changes in tissue mechanicsduring the transition to the constricted state are not artifactual.

  相似文献   

17.
Lutchen, Kenneth R., and Heather Gillis. Relationshipbetween heterogeneous changes in airway morphometry and lung resistanceand elastance. J. Appl. Physiol.83(4): 1192-1201, 1997.We present a dog lung model to predictthe relation between inhomogeneous changes in airway morphometry andlung resistance (RL) andelastance (EL) for frequenciessurrounding typical breathing rates. TheRL andEL were sensitive in distinctways to two forms of peripheral constriction. First, when there is alarge and homogeneous constriction, theRL increases uniformly over thefrequency range. The EL israther unaffected below 1 Hz but then increases with frequencies up to5 Hz. This increase is caused by central airway wallshunting. Second, the RL andEL are extremely sensitive to mild inhomogeneous constriction in which a few highly constricted ornearly closed airways occur randomly throughout theperiphery. This results in extreme increases in the levelsand frequency dependence of RLand EL but predominantly attypical breathing rates (<1 Hz). Conversely, theRL andEL are insensitive to highly inhomogeneous airway constriction that does not produce any nearly closed airways. Similarly, alterations in theRL andEL due to central airway wallshunting are not likely until the preponderance of the peripheryconstricts substantially. The RLand EL spectra are far moresensitive to these two forms of peripheral constriction than toconstriction conditions known to occur in the central airways. On thebasis of these simulations, we derived a set of qualitative criteria toinfer airway constriction conditions from RL andEL spectra.

  相似文献   

18.
Kaczka, David W., Edward P. Ingenito, Bela Suki, and KennethR. Lutchen. Partitioning airway and lung tissue resistances inhumans: effects of bronchoconstriction. J. Appl.Physiol. 82(5): 1531-1541, 1997.The contributionof airway resistance(Raw) and tissue resistance(Rti) to totallung resistance(RL)during breathing in humans is poorly understood. We have recentlydeveloped a method for separating Rawand Rti from measurements ofRLand lung elastance (EL)alone. In nine healthy, awake subjects, we applied a broad-band optimalventilator waveform (OVW) with energy between 0.156 and 8.1 Hz thatsimultaneously provides tidal ventilation. In four of the subjects,data were acquired before and during a methacholine (MCh)-bronchoconstricted challenge. TheRLandELdata were first analyzed by using a model with a homogeneous airwaycompartment leading to a viscoelastic tissue compartment consisting oftissue damping and elastance parameters. Our OVW-based estimates ofRaw correlated well with estimatesobtained by using standard plethysmography and were responsive toMCh-induced bronchoconstriction. Our data suggest thatRti comprises ~40% of totalRLat typical breathing frequencies, which corresponds to ~60% ofintrathoracic RL. During mildMCh-induced bronchoconstriction, Rawaccounts for most of the increase inRL. At high doses of MCh, therewas a substantial increase in RLat all frequencies and inEL athigher frequencies. Our analysis showed that bothRaw andRti increase, but most of the increaseis due to Raw. The data also suggestthat widespread peripheral constriction causes airway wall shunting toproduce additional frequency dependence inEL.

  相似文献   

19.
Nagase, Takahide, Hirotoshi Matsui, Tomoko Aoki, YasuyoshiOuchi, and Yoshinosuke Fukuchi. Lung tissue behavior in the mouseduring constriction induced by methacholine and endothelin-1. J. Appl. Physiol. 81(6):2373-2378, 1996.Recently, mice have been extensively used toinvestigate the pathogenesis of pulmonary disease because appropriatemurine models, including transgenic mice, are being increasinglydeveloped. However, little information about the lung mechanics of miceis currently available. We questioned whether lung tissue behavior andthe coupling between dissipative and elastic processes, hysteresivity(), in mice would be different from those in the other species. Toaddress this question, we investigated whether tissue resistance (Rti)and  in mice would be affected by varying lung volume, constrictioninduced by methacholine (MCh) and endothelin-1 (ET-1), andhigh-lung-volume challenge during induced constriction. From measuredtracheal flow and tracheal and alveolar pressures in open-chest ICRmice during mechanical ventilation [tidal volume = 8 ml/kg,frequency (f) = 2.5 Hz], we calculated lung resistance(RL), Rti, airway resistance(Raw), lung elastance (EL),and  (=2fRti/EL). Underbaseline conditions, increasing levels of end-expiratory transpulmonarypressure decreased Raw and increased Rti. The administration ofaerosolized MCh and intravenous ET-1 increasedRL, Rti, Raw, andEL in a dose-dependent manner.Rti increased from 0.207 ± 0.010 to 0.570 ± 0.058 cmH2O · ml1 · safter 107 mol/kg ET-1(P < 0.01). After inducedconstriction, increasing end-expiratory transpulmonary pressuredecreased Raw. However,  was not affected by changing lung volume,constriction induced by MCh and ET-1, or high-lung-volume challengeduring induced constriction. These observations suggest that1)  is stable in mice regardlessof various conditions, 2) Rti is animportant fraction of RL andincreases after induced constriction, and3) mechanical interdependence mayaffect airway smooth muscle shortening in this species. In mammalianspecies, including mice, analysis of  may indicate that both Rti andEL essentially respond to asimilar degree.

  相似文献   

20.
Ascaris suum (AS) challenge in nonhuman primates is used as an animal model of human asthma. The primary goal of this study was to determine whether the airways and respiratory tissues in monkeys that are bronchoconstricted by AS inhalation behave similarly to those in asthmatic humans. Airway resistance (Raw) and tissue elastance (Eti) were estimated from respiratory system input (Zin) or transfer (Ztr) impedance. Zin (0.4-20 Hz) and Ztr (2-128 Hz) were measured in anesthetized cynomolgus monkeys (n = 10) under baseline (BL) and post-AS challenge conditions. Our results indicate that AS challenge in monkeys produces 1) predominantly an increase in Raw and not tissue resistance, 2) airway wall shunting at higher AS doses, and 3) heterogeneous airway constriction resulting in a decrease of lung parenchyma effective compliance. We investigated whether the airway and tissue properties estimated from Zin and Ztr were similar and found that Raw estimated from Zin and Ztr were correlated [r(2) = 0.76], not significantly different at BL (13.6 +/- 1.4 and 13.1 +/- 0.9 cmH(2)O. l(-1). s(-1), respectively), but significantly different post-AS (20.5 +/- 4.5 cmH(2)O. l(-1). s(-1) and 18.5 +/- 5.2 cmH(2)O. l(-1). s(-1)). There was no correlation between Eti estimated from Zin and Ztr. The changes in lung mechanical properties in AS-bronchoconstricted monkeys are similar to those recently reported in human asthma, confirming that this is a reasonable model of human asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号