首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recombinant rotavirus VP6 expressed in transgenic tomato cells was found primarily in the intracellular fraction and had a molecular weight of 44 kDa. In a shake flask, transgenic tomato cells produced 0.33 mg recombinant VP6 l–1 after 18 days of incubation. In a high aspect rotating-wall vessel designed by NASA to simulate microgravity, the transgenic cells produced up to 0.15 mg recombinant VP6 l–1.  相似文献   

2.
Recombinant human cyclooxygenase 2 (Cox 2) was expressed in stably transformed Drosophila melanogaster S2 cells, and was present primarily in the cellular fraction at a molecular weight of 70 to 74 kDa. Recombinant Cox 2 was purified using Ni2+-affinity fractionation to a specific activity of 24 800 U mg–1 protein. The peak level of recombinant Cox 2 production was 1.6 g (107 cells)–1, seven days after induction with 0.5 mM CuSO4. Supplementing the cultures with dimethylsulfoxide or sodium butyrate increased recombinant Cox 2 production by 170% and 86%, respectively.  相似文献   

3.
Kwon TH  Kim YS  Lee JH  Yang MS 《Biotechnology letters》2003,25(18):1571-1574
A complementary DNA encoding human granulocyte-macrophage colony stimulating factor (hGM-CSF) was cloned and introduced into tomato (Lycopersicon esculentum cv. Seokwang) using Agrobacterium-mediated transformation. Genomic PCR and Northern blot analysis demonstrated the integration of the construction into the plant nuclear genome and expression of the hGM-CSF in transgenic tomato. The cell suspension culture was established from leaf-derived calli of the transgenic tomato plants transformed with the hGM-CSF gene. Recombinant hGM-CSF was synthesized by the transgenic cell culture and secreted into the growth medium at 45 g l–1 after 10 d' cultivation.  相似文献   

4.
A high density hybridoma perfusion culture was established by separating and recycling cells from the product stream to the reactor using a simple external sedimentation-based separator — an inclined modified Erlenmeyer flask. After 3 weeks, when the optimal perfusion rate of 1.0 day–1 had been reached, viable cell density stabilized at around 10×106 cells ml–1, a level five times that obtained by simple batch culture. The efficiency of the separator was enhanced by cell flocculation. Specific antibody productivity, which was initially 0.4 g 1×106 cells–1 h–1, decreased to half that value while cell density was increasing, but recovered to the initial level when the culture finally stabilized at a high cell density. During the final phase, when viable cell density and specific antibody production were high, there was a marked shift in metabolism. Consumption of the two most important substrates for energy generation, glucose and glutamine, caused their broth concentrations to decrease to 1.5 mM and 1 mM, respectively, from input medium concentrations of 25 mM and 10 mM, respectively. At the same time there was an increase in the specific production of glycine and aspartate, their broth concentrations reaching 1.5 mM and 0.02 mM, respectively. We suggest that this shift in metabolism results in enhanced production of ATP from glutamine. The specific glucose consumption and lactate production also indicate that there is a shift to more energy efficient metabolism. The mechanism whereby this leads to enhanced specific antibody production remains to be elucidated. Nevertheless, the combination of high cell density and enhanced productivity obtained with the present perfusion culture resulted in a high monoclonal antibody production –100 mg l–1 d–1.  相似文献   

5.
Glycerol at 10–20 g l–1 increased clavulanic acid production by Streptomyces clavuligerus in shake-flask culture. The biosynthesis of clavulanic acid continued for longer by feeding glycerol and production increased to 250 mg l–1 compared with 115 mg l–1 without feeding. In fermenter batch culture, degradation of clavulanic acid began after 72 h. With glycerol feeding in fed-batch culture, clavulanic acid production was not only increased further to about 280 mg l–1 but also remained stable up to 130 h.  相似文献   

6.
Callus of Orthosiphon stamineus could be induced successfully from petiole, leaf and stem tissues but not roots when cultured on MS medium containing different concentration of NAA (0–4.0 mg l–1) and 2,4-D (0–2.0 mg l–1). Highest fresh weight callus production was obtained from leaf explants and those with best friability were obtained on MS medium plus 1.0 mg l–1 2,4-D plus 1.0 mg l–1 NAA. Cell suspension cultures were established from these cultures. The appropriate cell inoculum size for the best cell growth was 0.75 g of cells in 20 ml culture medium. Cell suspension culture using MS medium supplemented with 1.0 mg l–1 2,4-D promoted the best cell growth with maximum biomass of 8.609 g fresh weight and 0.309 g dry weight 24 days after inoculation. Cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D reached the stationary growth phase in 15 days as compared to the cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D + 1.0 mg l–1 NAA reached the stationary phase in 24 days. MS medium supplemented with 1.0 mg l–1 2,4-D was considered as the maintenance medium for maintaining the optimum cell growth of O. stamineus in the cell suspension cultures with 2-week interval subculture.  相似文献   

7.
A chemically defined protein free medium, DF6S, was developed for the cultivation of a recombinant Chinese hamster ovary cell line (CHO2DS) producing human prothrombin in suspension batch culture. DF6S was formulated by optimizing DME/F12 with amino acids and supplementing the optimized DME/F12 with aurintricarboxylic acid, ethanolamine, ferric sulfate, Pluronic F68, putrescine and sodium pyruvate. From a seeding density of 2.3 × 105 cells ml–1, CHO2DS cells grown in suspension in DF6S medium reached a maximal cell density of 1.92 × 106 cells ml–1 with an accumulated prothrombin concentration of 16.7 mg l–1 after 6 days in culture.  相似文献   

8.
Chen SA  Wang X  Zhao B  Yuan X  Wang Y 《Biotechnology letters》2003,25(15):1235-1238
Saffron callus was grown in a two-stage culture on B5 medium supplemented with casein hydrolysate (300 mg l–1) at 22 °C in dark with naphthalene acetic acid (2 mg l–1) and 6-benzyladenine (1 mg l–1) to give maximum biomass (16 g dry wt l–1), and with indole 3-acetic acid (2 mg l–1) and 6-benzyladenine (0.5 mg l–1) for crocin formation. The maximum crocin production (0.43 g l–1) was achieved by this two-stage culture method, which was three times that by a one-stage method.  相似文献   

9.
J. Luo  L. Liu  C.D. Wu 《Biotechnology letters》2001,23(16):1345-1348
Addition of 5 mg abscisic acid l–1 after 12 days' growth of Taxus chinensis suspension culture gave the greatest paclitaxel accumulation at 11 mg l–1, which was almost 5 times that of the control culture. The highest paclitaxel production, 18 mg l–1, was obtained using 5 mg abscisic acid l–1 and 20 mg methyl jasmonate l–1.  相似文献   

10.
Bioconversion of compactin into pravastatin by Streptomyces sp.   总被引:3,自引:0,他引:3  
Streptomyces sp. Y-110, isolated from soil, modified compactin to pravastatin, a therapeutic agent for hypercholesterolemia. In a batch culture, the highest production of pravastatin was 340 mg l–1 from 750 mg compactin l–1 in 24 h. By intermittent feeding of compactin into the culture medium, both the compactin concentration and its conversion increased to 2000 mg l–1 and 1000 mg pravastatin l–1, respectively, with the conversion rate of 10 mg l–1 h–1. Continuous feeding of compactin increased production of pravastatin to 15 mg l–1 h–1.  相似文献   

11.
To investigate the production potential of eicosapentaenoic acid (EPA) by the diatom Nitzschia laevis, the growth characteristics and fatty acid composition of the cells were studied under photoautotrophic, mixotrophic and heterotrophic conditions of growth. The specific growth rate and maximum biomass concentration were respectively 0.466 d–1 and 2.27 g l–1 for mixotrophic culture, 0.344 d–1 and 2.04 g l–1 for heterotrophic culture, and 0.167 d–1 and 0.5 g l–1 for photoautotrophic culture, respectively. As for EPA production, the yield and productivity were respectively 52.32 mg l–1 and 10.46 mg l–1 d for mixotrophic culture, 35.08 mg l–1 and 6.37 mg l–1 d for heterotrophic culture, and 6.78 mg l–1 and 3.39 mg l–1 d for photoautotrophic culture, respectively. Results suggest that mixotrophic culture is the most suitable growth mode for the production of EPA by the diatom Nitzschia laevis. The results are useful for the development of a cost-effective fermentation process for EPA production by Nitzschia laevis.  相似文献   

12.
Superoxide dismutase (SOD) plays an important role in cellular defense against oxidative stress in aerobic organisms. To generate cucumber (Cucumis sativus L.) fruits producing high yields of SOD for an anti-aging cosmetic material as a plant bioreactor, the CuZnSOD cDNA (mSOD1) from cassava was introduced into cucumber fruits by Agrobacterium-mediated transformation using the ascorbate oxidase promoter with high expression in fruits. The bialaphos-resistant shoots were selected on medium containing MS basal salts, 2 mg l–1 BA, 0.1 mg l–1 IAA, 300 mg l–1 claforan, and 2 mg l–1 bialaphos. After 6 weeks of culture on the selection medium, the shoots were transferred to MS medium containing 1 mg l–1 IAA, 300 mg l–1 claforan, 2 mg l–1 bialaphos to induce roots. Southern blot analysis confirmed that the mSOD1 gene was properly integrated into the nuclear genomes of three cucumber plants tested. The mSOD1 gene was highly expressed in the transgenic cucumber fruits, whereas it was expressed at a low level in the transgenic leaves. The SOD specific activity (units/mg protein) in transgenic fruits was approximately 3 times higher than in those of non-transgenic plants.  相似文献   

13.
Petioles from in vitro grown plants of interspecific grapevine hybrids cvs `Bianca', `Podarok Magaracha' and `Intervitis Magaracha' were cultured on solid NN medium supplemented with 2,4-D and BA at various concentrations. The callus developed was cultured in liquid NN medium supplemented with 0.5 mg l–1 BA to induce formation of somatic embryos. Somatic embryos of globular and heart-stage developed in suspensions of `Podarok Magaracha' and `Intervitis Magaracha'. In contrast, `Bianca' did not undergo embryogenesis beyond globular stage. This made it necessary to perform subculture of the suspensions to HTE liquid medium supplemented with 0.2 mg l–1 BA for the development of globular embryos into heart stage. Heart-stage embryos developed into torpedo-stage after subculturing suspensions of all three cultivars to liquid HTE medium supplemented with 0.1 mg l–1 IAA and 30 mg l–1 sodium hummate. Torpedo-stage embryo suspensions were subcultured in liquid HTE medium supplemented with 0.5 mg l–1 BA, 0.5 mg l–1 GA3 and 0.5 mg l–1 GA3 + 0.2 mg l–1 BA. After 12 days of incubation, plantlets were cultured on solid M2MS medium: without growth regulators and with 0.5 mg l–1 BA. Plantlets that developed in liquid HTE media with 0.5 mg l–1 GA3 or 0.5 mg l–1 GA3 + 0.2 mg l–1 BA produced 82–90% shoots on solid M2MS medium with 0.5 mg l–1 BA after 50 days of culture.  相似文献   

14.
Keen MJ  Rapson NT 《Cytotechnology》1995,17(3):153-163
A serum-free medium, WCM5, has been developed for the large scale propagation of CHO (Chinese hamster ovary) cells which express recombinant protein using dihydrofolate reductase as a selectable marker. WCM5 was prepared by supplementing Iscoves medium without lecithin, albumin or transferrin with a number of components which were shown to benefit growth. WCM5 medium contained 5 mg l–1 human recombinant insulin (Nucellin) but was otherwise protein-free. CHO 3D11* cells which had been engineered to express a humanised antibody, CAMPATH*-1H, were routinely grown using serum-containing medium. From a seeding density of 105 cells ml–1, cells grown in static culture with serum reached a maximal cell density of 6.5×105 cells ml–1 after 6 days in culture and produced a maximal antibody concentration of 69 mg l–1 after 11 days in culture. CHO 3D11* cells grown with serum were washed in serum-free medium then cultured in WCM5 medium. Following a period of adaptation the cell growth and product yield was superior to that achieved with serum-containing medium. CHO cells producing CAMPATH-1H grown in an 8000 l stirred bioreactor seeded with 2×105 cells ml–1 reached a maximal viable cell density of 2.16×106 cells ml–1 after 108 h in culture and a maximal antibody concentration of 131.1 mg l–1 after 122 h in culture.Abbreviations CHO Chinese hamster ovary - dhfr dihydrofolate reductase - dhfr dihydrofolate reductase deficient - MTX methotrexate - H hypoxanthine - T thymidine - T/V trypsin versene - F12 Hams F12 medium - NEAA non essential amino acids  相似文献   

15.
Feeding sucrose at 20 g l–1 on day 16 gave maximum paclitaxel production at 10 mg l–1 when Taxus chinensis in 5 l bioreactors. Paclitaxel accumulation was doubled by the cultivation of cells initially with dissolved O2 tension at 60% for 20 days followed by being at 20% for another 12 days in the bioreactor. Combination of these two strategies gave maximum paclitaxel production of 19 mg l–1 after 32 days.  相似文献   

16.
A bacterial strain of Acinetobacter sp., which was capable of enzymatic production of pyruvate from lactate, was cultured in a 5-l reactor with a basal salt medium. After 14 h of fed-batch fermentation, 9.56 g l–1 cell concentration in the broth was obtained with 20 g l–1 (178 mM) sodium lactate and 4 g l–1 NH4Cl in the medium; and the biotransformation ability was 2.51 units ml–1. The cells were harvested from one reactor and then used for pyruvate production from lactate in the same reactor. l-lactate at a concentration about 527 mM was almost stoichiometrically converted to pyruvate in 28 h. After a total 42 h of cell culture and biotransformation, the transformative yield was about 0.72 g g–1 pyruvate from lactate and the rate of pyruvate production was calculated as 1.33 g l–1 h–1 during the process. The results suggested this simple enzymatic production of pyruvate from lactate should be a promising process and may bring a yield higher than that by microbial fermentation. By this process, the recovery of pyruvate from such a simple reaction liquid is relatively easy and inexpensive to perform.  相似文献   

17.
Aerobic biodegradation of a xenobiotic recalcitrant compound sodium anthraquinone-2-sulphonate (SAS), was investigated using as an inoculum a mixed microbial culture, which was activated sludge from industrial and domestic waste-water treatment plants. The difference in SAS degradation was examined using two main systems: (1) suspended cells and (2) immobilized cells, both in batch and in continuous culture. In the suspended cell system, under continuous culture conditions using SAS as a unique source of carbon and energy, it was possible to degrade about 95% of this substrate after 6 days. Maximal SAS removal rates in the suspended-cell system were 593 mg SAS l–1 h–1 and 88.7 mg SAS l–1 h–1 for dilution rates (D) of 0.05 h–1 and 0.075 h–1, respectively. In the immobilized-cell system, almost all SAS was degraded in 6 days and the maximal removal rate reached 88.7 mg SAS l–1 h–1 at D=0.05 h–1. Application of a continuous-flow enrichment procedure resulted in selection of several kinds of micro-organisms and led to a progressive elimination of some species of Aeromonas. A stable microbial community of 11 strains has been established and characterized at D=0.075 h–1. Most of them were Gram-negative and belonged to the genus Pseudomonas.  相似文献   

18.
An anti-hepatitis B surface antigen (HBsAg), single-chain Fv antibody fragment (scFv) with a 6-histidine N-terminal tag was produced in cultured transgenic tobacco cells. Western blot and antigen-specific chromatography showed high levels of biologically active scFv in the culture supernatant (1 mg l–1) and in cells (5 mg kg–1). A simple one-step scFv purification was developed using immobilized metal ion affinity chromatography.  相似文献   

19.
Ruminal cellulolytic bacteria (Fibrobacter succinogenes S85 or Ruminococcus flavefaciens FD-1) were combined with the non-ruminal bacterium Clostridium kluyveri and grown together on cellulose and ethanol. Succinate and acetate produced by the cellulolytic organisms were converted to butyrate and caproate only when the culture medium was supplemented with ethanol. Ethanol (244 mM) and butyrate (30 mM at pH 6.8) did not inhibit cellulose digestion or product formation by S85 or FD-1; however caproate (30 mM at pH 6.8) was moderately inhibitory to FD-1. Succinate consumption and caproate production were sensitive to culture pH, with more caproic acid being produced when the culture was controlled at a pH near neutrality. In a representative experiment under conditions of controlled pH (at 6.8) 6.0 g cellulose 1–1 and 4.4 g ethanol 1–1 were converted to 2.6 g butyrate 1–1 and 4.6 g caproate 1–1. The results suggest that bacteria that efficiently produce low levels of ethanol and acetate or succinate from cellulose should be useful in cocultures for the production of caproic acid, a potentially useful industrial chemical and bio-fuel precursor.Mention of specific products is intended only to provide information and does not contitute an endorsement by the U.S. Department of Agriculture over other products not mentioned.  相似文献   

20.
The effects of concentration of amino acids, nitrate, and ammonium on the growth and taxol production in cultures of cell line TY-21 of Taxus yunnanensis were investigated. Addition of 20 different amino acids each at 15–20 mg l–1 to B5 medium significantly improved callus growth but inhibited taxol formation in the cultures. The optimum nitrate concentration was 20–30 mM for both growth and taxol production. Ammonium greatly suppressed growth but strongly promoted taxol formation in the cells when it was the sole inorganic nitrogen in the medium. Culturing the suspension cells in nitrate-containing medium for 15 days and then in a medium in which ammonium was the sole inorganic nitrogen for 7 days increased taxol yield by 104%, reaching up to 28.1 mg l–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号