首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微粒是细胞活化或凋亡时释放的磷脂囊泡,直径大小为100-1000 nm,并且带有亲缘性细胞的特异性抗原标记。外周血中的细胞微粒主要来源于血小板、白细胞、红细胞和内皮细胞。由于细胞活化和凋亡机制不同,所以从不同细胞上脱落的微粒大小、磷脂和原始细胞细胞质的含量也不同。微粒有潜在的生物学作用,包括对血管内皮细胞舒张功能的作用和对内皮细胞的促进生长的作用。除此之外,微粒能通过携带部分自身成份转移到靶细胞来介导细胞的活化、细胞表型的改变和细胞功能的重组。在疾病发生过程中,外周血中微粒的数量显著增加,这提示微粒可能参与了很多疾病的发生与发展,所以微粒日益受到临床工作者的重视。本文对微粒的形成原因、微粒成分,对内皮细胞的作用及其机制进行综述。微粒作为内皮细胞相关疾病一个新的治疗靶点,阐明其与内皮细胞功能障碍发生机制之间的关系,有助于为内皮细胞病变相关性疾病的治疗提供新的途径。  相似文献   

2.
淡水湿地中日益严重的微塑料(MPs)污染已引起全球关注。为了解鄱阳湖典型湿地微塑料的时空动态特征,相继于丰水期和枯水期采集鄱阳湖流域五河入湖段和鄱阳湖汇入长江出湖段的水体和沉积物样品,分别采用消解抽滤法和浮选分离-消解抽滤法分离水体和沉积物中的微塑料,采用显微镜、傅里叶变换红外光谱仪和扫描电镜鉴定分析微塑料表征。结果表明: 鄱阳湖各区域丰水期水体和沉积物微塑料丰度范围分别为32.1~127.3 n·L-1和533.3~1286.6 n·kg-1,枯水期分别为87.1~295.5 n·L-1和460.0~1368.0 n·kg-1,与其他淡水湿地相比,鄱阳湖具有较高的微塑料丰度,且各区域间呈时空差异性。研究区微塑料的主要形态有微球、碎片、薄膜和纤维等,相应聚合物成分主要为聚苯乙烯(PS)、聚丙烯(PP)和聚乙烯(PE)等;水体中微塑料以微球类(丰水期35.7%,枯水期52.0%)为主要形态,沉积物中以碎片类(丰水期45.8%,枯水期69.7%)为主要形态;两个水期水体和沉积物中均以小粒径(<0.1 mm)微塑料占优势(>50%),不同粒径微塑料丰度随粒径增大呈减少趋势。鄱阳湖湿地微塑料的潜在主要来源包括工业废水排放、城乡生活污水处理厂排放、农业和渔业活动以及生活垃圾处理不当。  相似文献   

3.
红曲菌(Monascus spp.)是我国重要的药食同源微生物,红曲色素(Monascus pigments,MPs)是其主要次级代谢产物之一。有研究表明,甘油可促进红曲菌产MPs,但作用机制不明。以丛毛红曲菌(Monascus pilosus)MS-1为实验菌株,考察甘油与葡萄糖或蔗糖复合对红曲菌产MPs的影响。在不含碳源的合成培养基中,将甘油与葡萄糖或蔗糖复合,采用分光光度法和高效液相色谱法等分析MPs的产量和组分、生物量及发酵液pH。当甘油与葡萄糖复合,添加甘油后发酵液pH、生物量无显著变化(P0.05),总色价显著降低(P0.05)。当2 g/L或40 g/L甘油与蔗糖复合,发酵液pH显著降低而生物量及总色价显著增加(P0.05)。当40 g/L甘油与蔗糖复合时,总色价是仅以蔗糖为碳源时的16.5倍,且MPs同系物数量明显增多(P0.05)。在合成培养基条件下,甘油促进红曲菌产MPs具有碳源种类的选择性。该结果可为研究甘油影响红曲菌产MPs的作用机制提供参考,为甘油用于MPs生产提供依据。  相似文献   

4.
The volatile alkylpyrazines methyl‐ and methoxypyrazines (MPs) present in the reflex bleeds of coccinellid beetles such as the harlequin ladybird beetle Harmonia axyridis are important semiochemicals that function in antipredatory defense behavior. Pyrazines have also been coadapted from a primarily defensive role into pheromones that function in intraspecific communication, attraction, and aggregation behavior. However, the biosynthesis of MPs in ladybird beetles is poorly understood. Here, we tested the hypothesis that MPs could be produced by microbial symbionts in H. axyridis, which generates four different MPs. The evaluation of tissue‐specific MP production showed that MP concentrations were highest in the gut tissue and hemolymph of the beetles rather than the fat body tissue as the presumed site of MP biosynthesis. Furthermore, manipulation of gut microbiota by antibiotic‐containing diets resulted in a lower MP content in adult beetles. The analysis of the bacterial community of the digestive tract revealed the presence of bacteria of the genera Serratia and Lactococcus which are reportedly able to produce MPs. In line with the known diet‐dependent production of MP in H. axyridis, we determined that the presence or relative abundance of some of the potential MP producers (Enterococcus and Staphylococcus) is also diet‐dependent. We hypothesize a potential role of the microbiota in MP production in H. axyridis as a possible example for outsourcing the synthesis of ecologically important semiochemicals to its gut bacteria.  相似文献   

5.
Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles–chemiluminescence enzyme immunoassay (MPs–CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol–H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs–CLEIA method had a linear range from 0.31 to 100 ng/ml with a detection limit of 0.24 ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA.  相似文献   

6.
Tightly associated with blood vessels in their perivascular niche, human mesenchymal stem cells (MSCs) closely interact with endothelial cells (ECs). MSCs also home to tumours and interact with cancer cells (CCs). Microparticles (MPs) are cell‐derived vesicles released into the extracellular environment along with secreted factors. MPs are capable of intercellular signalling and, as biomolecular shuttles, transfer proteins and RNA from one cell to another. Here, we characterize interactions among ECs, CCs and MSCs via MPs and secreted factors in vitro. MPs and non‐MP secreted factors (Sup) were isolated from serum‐free medium conditioned by human microvascular ECs (HMEC‐1) or by the CC line HT1080. Fluorescently labelled MPs were prepared from cells treated with membrane dyes, and cytosolic GFP‐containing MPs were isolated from cells transduced with CMV‐GFP lentivirus. MSCs were treated with MPs, Sup, or vehicle controls, and analysed for MP uptake, proliferation, migration, activation of intracellular signalling pathways and cytokine release. Fluorescently labelled MPs fused with MSCs, transferring the fluorescent dyes to the MSC surface. GFP was transferred to and retained in MSCs incubated with GFP‐MPs, but not free GFP. Thus, only MP‐associated cellular proteins were taken up and retained by MSCs, suggesting that MP biomolecules, but not secreted factors, are shuttled to MSCs. MP and Sup treatment significantly increased MSC proliferation, migration, and MMP‐1, MMP‐3, CCL‐2/MCP‐1 and IL‐6 secretion compared with vehicle controls. MSCs treated with Sup and MPs also exhibited activated NF‐κB signalling. Taken together, these results suggest that MPs act to regulate MSC functions through several mechanisms.  相似文献   

7.
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1–2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug‐specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans‐membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α‐helical MPs as well as β‐barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge‐based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. Proteins 2015; 83:1–24. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
This work presents the functional characterisation of a protein phosphatase 2A (PP2A) catalytic subunit obtained by genetic engineering and its conjugation to magnetic particles (MPs) via metal coordination chemistry for the subsequent development of assays for diarrheic lipophilic marine toxins. Colorimetric assays with free enzyme have allowed the determination of the best enzyme activity stabiliser, which is glycerol at 10%. They have also demonstrated that the recombinant enzyme can be as sensitive towards okadaic acid (OA) (LOD = 2.3 μg/L) and dinophysistoxin-1 (DTX-1) (LOD = 15.2 μg/L) as a commercial PP2A and, moreover, it has a higher operational stability, which makes possible to perform the protein phosphatase inhibition assay (PPIA) with a lower enzyme amount. Once conjugated to MPs, the PP2A catalytic subunit still retains its enzyme activity and it can also be inhibited by OA (LOD = 30.1 μg/L).  相似文献   

9.
Low expression and instability during isolation are major obstacles preventing adequate structure‐function characterization of membrane proteins (MPs). To increase the likelihood of generating large quantities of protein, C‐terminally fused green fluorescent protein (GFP) is commonly used as a reporter for monitoring expression and evaluating purification. This technique has mainly been restricted to MPs with intracellular C‐termini (Cin) due to GFP's inability to fluoresce in the Escherichia coli periplasm. With the aid of Glycophorin A, a single transmembrane spanning protein, we developed a method to convert MPs with extracellular C‐termini (Cout) to Cin ones providing a conduit for implementing GFP reporting. We tested this method on eleven MPs with predicted Cout topology resulting in high level expression. For nine of the eleven MPs, a stable, monodisperse protein‐detergent complex was identified using an extended fluorescence‐detection size exclusion chromatography procedure that monitors protein stability over time, a critical parameter affecting the success of structure‐function studies. Five MPs were successfully cleaved from the GFP tag by site‐specific proteolysis and purified to homogeneity. To address the challenge of inefficient proteolysis, we explored expression and purification conditions in the absence of the fusion tag. Contrary to previous studies, optimal expression conditions established with the fusion were not directly transferable for overexpression in the absence of the GFP tag. These studies establish a broadly applicable method for GFP screening of MPs with Cout topology, yielding sufficient protein suitable for structure‐function studies and are superior to expression and purification in the absence GFP fusion tagging.  相似文献   

10.
随着测序技术的发展和对tRNA衍生小分子(tRNA-derived small RNA,tsRNAs)的深入研究,越来越多的tsRNAs及其功能在各物种中被鉴定。tsRNAs根据切割位点的不同可分为tRNA衍生片段(tRNA-derived fragment,tRF)和tRNA应激诱导RNA(tRNA-derived stress-induced RNA,tiRNA),其中tRF是一类具有调节功能的非编码RNA。为了加深对tRF的研究,近年来一些基于测序数据的tRF鉴定方法和相关数据库不断涌现,前者主要包括Telonis等人的算法和tDRmapper方法,后者主要有tRFdb、tRF2Cancer和MINTbase等。同时这两者为tRF的深入研究提供了更有效的工具。大量的研究表明,tRF主要以类似miRNA的方式对RNA、DNA及蛋白质进行调节,但也存在特异的作用方式。随着对这三者的深入研究,研究人员发现tRF在人类疾病的各种生物过程中也扮演着重要的角色,例如可以作为生物标志物。因此本文主要对tRF的鉴定方法、数据库、对靶分子的调节机制及其与人类疾病的关系作一综述。  相似文献   

11.
Our previous studies demonstrated the formation of structurally diverse DNA-containing microparticles (DNA MPs) in PCR with Mg-pyrophosphate (MgPPi) as the structure-forming component. These DNA MPs were referred to major structural types: microdisks (2D MPs) with nanometer thickness and 3D MPs with sophisticated morphology and constructed from intersecting disks and their segments. Little is known about factors that influence both the morphology and size of DNA MPs, and the present study was aimed at fulfilling this gap. We showed that the addition of Mn2+ cations to PCR mixtures caused the profound changes in MPs morphology, depending on DNA polymerase used (KlenTaq or Taq). Asymmetric PCR with 20-fold decrease in the concentration of one of two primers facilitated the predominant formation of microdisks with unusual structure. The addition of 1 mM Na-pyrophosphate to PCR mixtures with synthesized DNA and subsequent thermal cycling (10–15 cycles) were optimal to produce microdisks or nanometer 3D particles. Using electron microscopy, we studied also the structure of inorganic micro- and nanoparticles from MgPPi, formed during multiple heating and cooling cycles of a mixture of Mg2+ and Na-pyrophosphate in various regimes. Also, we found the conditions to yield planar (Mg·Mn)PPi nanocrystals (diameter ~100 nm and thickness ~10 nm) which efficiently adsorbed exogenous DNA. These inorganic nanoparticles are promising for DNA delivery in transfection studies. Mechanisms to be involved in structural modifications of MPs and perspectives of their practical application are discussed.  相似文献   

12.
The aim of this study was to assess whether a particular value of noninvasive salivary ultra‐weak chemiluminescence (UCL) could be used as a biomarker of psychological stress. Our study covered two groups. Group 1 comprised six healthy volunteers who stayed in a hospital for one night and group 2 comprised 15 patients with lung cancer and 24 patients with respiratory diseases other than lung cancer who were in hospital for an extended stay. First, we evaluated the UCL of saliva from six healthy volunteers before and after one night in hospital. Immunoglobulin A (IgA) concentrations were also measured. The integrated intensity value of UCL was correlated with the IgA concentration (correlation coefficient 0.90). Second, in the case of a long hospital stay, we found that the maximum salivary UCL intensities were higher in patients with lung cancer than in those with respiratory diseases other than lung cancer or in 28 healthy controls. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Cho H  Smalley DM  Theodorescu D  Ley K  Lee JK 《Proteomics》2007,7(20):3681-3692
LC-MS/MS with certain labeling techniques such as isotope-coded affinity tag (ICAT) enables quantitative analysis of paired protein samples. However, current identification and quantification of differentially expressed peptides (and proteins) are not reliable for large proteomics screening of complex biological samples. The number of replicates is often limited because of the high cost of experiments and the limited supply of samples. Traditionally, a simple fold change cutoff is used, which results in a high rate of false positives. Standard statistical methods such as the two-sample t-test are unreliable and severely underpowered due to high variability in LC-MS/MS data, especially when only a small number of replicates are available. Using an advanced error pooling technique, we propose a novel statistical method that can reliably identify differentially expressed proteins while maintaining a high sensitivity, particularly with a small number of replicates. The proposed method was applied both to an extensive simulation study and a proteomics comparison between microparticles (MPs) generated from platelet (platelet MPs) and MPs isolated from plasma (plasma MPs). In these studies, we show a significant improvement of our statistical analysis in the identification of proteins that are differentially expressed but not detected by other statistical methods. In particular, several important proteins - two peptides for beta-globin and three peptides for von Willebrand Factor (vWF) - were identified with very small false discovery rates (FDRs) by our method, while none was significant when other conventional methods were used. These proteins have been reported with their important roles in microparticles in human blood cells: vWF is a platelet and endothelial cell product that binds to P-selectin, GP1b, and GP IIb/IIIa, and beta-globin is one of the peptides of hemoglobin involved in the transportation of oxygen by red blood cells.  相似文献   

14.
Microparticles (MPs) are membrane fragments shed by cells activated by a variety of stimuli including serine proteases, inflammatory cytokines, growth factors, and stress inducers. MPs originating from platelets, leukocytes, endothelial cells, and erythrocytes are found in circulating blood at relative concentrations determined by the pathophysiological context. The procoagulant activity of MPs is their most characterized property as a determinant of thrombosis in various vascular and systemic diseases including myocardial infarction and diabetes. An increase in circulating MPs has also been associated with ischemic cerebrovascular accidents, transient ischemic attacks, multiple sclerosis, and cerebral malaria. Recent data indicate that besides their procoagulant components and identity antigens, MPs bear a number of bioactive effectors that can be disseminated, exchanged, and transferred via MPs cell interactions. Furthermore, as activated parenchymal cells may also shed MPs carrying identity antigens and biomolecules, MPs are now emerging as new messengers/biomarkers from a specific tissue undergoing activation or damage. Thus, detection of MPs of neurovascular origin in biological fluids such as CSF or tears, and even in circulating blood in case of blood–brain barrier leakage, would not only improve our comprehension of neurovascular pathophysiology, but may also constitute a powerful tool as a biomarker in disease prediction, diagnosis, prognosis, and follow-up.  相似文献   

15.
Stroke is one of the leading causes of mortality and disability worldwide. Numerous pathophysiological mechanisms involving blood vessels, coagulation and inflammation contribute to the vascular occlusion. Perturbations in these pathways can be detected by numerous methods including changes in endoplasmic membrane remodeling and rearrangement leading to the shedding of microparticles (MPs) from various cellular origins in the blood. MPs are small membrane-derived vesicles that are shed from nearly all cells in the body in resting state or upon stimulation. MPs act as biological messengers to transfer information to adjacent and distant cells thus regulating various biological processes. MPs may be important biomarkers and tools for the identification of the risk and diagnosis of cerebrovascular diseases. Endothelial activation and dysfunction and altered thrombotic responses are two of the main features predisposing to stroke. Endothelial MPs (EMPs) have been recognized as both biomarkers and effectors of endothelial cell activation and injury while platelet-derived MPs (PMPs) carry a strong procoagulant potential and are activated in thrombotic states. Therefore, we reviewed here the role of EMPs and PMPs as biomarkers of stroke. Most studies reported high circulating levels of EMPs and PMPs in addition to other cell origins in stroke patients and have been linked to stroke severity, the size of infarction, and prognosis. The identification and quantification of EMPs and PMPs may thus be useful for the diagnosis and management of stroke.  相似文献   

16.
Summary Platelet microparticles (MPs) are membrane vesicles shed by platelets after activation, and carry antigens characteristic of intact platelets, such as glycoprotein (GP) IIb/IIIa, GPIb and P-selectin. Elevated platelet MPs have been observed in many disorders in which platelet activation is documented. Recently, platelet GPIb has been implicated in the mediation of platelet–leukocyte interaction via binding to its ligand Mac-1 on leukocyte. The role of GPIb for mediating adhesion-activation interactions between platelet MPs and leukocytes has not been clarified. In this study we investigate the role of GPIb in the interplay between platelet MPs and neutrophils. Platelet MPs were obtained from collagen-stimulated platelet-rich plasma (PRP). In a study model of neutrophil aggregation, platelet MPs can serve a bridge to support neutrophil aggregation under venous level shear stress, suggesting that platelet MPs may enhance leukocyte aggregation, which would bear clinical relevance in diseases where the platelet MPs are elevated. The level of aggregation can be reduced by GPIb blocking antibodies, AP1 and SZ2, but not by anti-CD18 mAb. The GPIb blocking antibodies also decreased platelet MP-mediated neutrophil activation, including β2 integrin expression, adherence-dependent superoxide release and platelet MP-mediated neutrophil adherence to immobilized fibrinogen. Our data provide the evidence for the involvement of GPIb–Mac-1 interaction in the cross-talk between platelet MPs and neutrophils.  相似文献   

17.
Fragmin/protamine microparticles (F/P MPs) have been used as carriers for the preservation and activation of cytokines in human plasma (HP)–Dulbecco’s modified Eagle’s medium (DMEM) gels. This study investigated a three-dimensional (3D) culture system using an HP–DMEM gel with 0.1 mg/mL F/P MPs and 5 ng/mL FGF-2 for the proliferation of human dermal fibroblast cells (DFCs), human microvascular endothelial cells (MVECs) and human coronary smooth muscle cells (SMCs), or 5 ng/mL interleukin (IL)-3/granulocyte-macrophage colony-stimulating factor (GM-CSF) for a human hematopoietic cell line (TF-1 cells). DFCs, MVECs, SMCs and TF-1 cells grew rapidly under 3D culture conditions using a low-concentration HP (2 %)–DMEM gel with F/P MPs and FGF-2 (for DFCs, MVECs and SMCs) or IL-3/GM-CSF (for TF-1 cells) at doubling times of 22, 23, 25 and 18 h, respectively, without the use of animal serum, compared to under 2D culture conditions using low-concentration human serum (2 %)–DMEM with 5 ng/mL FGF-2 or IL-3/GM-CSF on F/P MP-coated plates at doubling times of approximately 26, 25, 40 and 20 h, respectively.  相似文献   

18.
Schwarz D  Dötsch V  Bernhard F 《Proteomics》2008,8(19):3933-3946
Production of membrane proteins (MPs) is a challenging task as their hydrophobic nature and their specific requirements in cellular expression systems frequently prevent an efficient synthesis. Cell-free (CF) expression systems have been developed in recent times as promising tools by offering completely new approaches to synthesize MPs directly into artificial hydrophobic environments. A considerable variety of CF produced MPs has been characterized by functional and structural approaches and the high success rates and the rapidly accumulating data on quality and expression efficiencies increasingly attract attention. In addition, CF expression is a highly dynamic and versatile technique and new modifications for improved performance as well as for extended applications for the labeling, throughput expression and proteomic analysis of MPs are rapidly emerging.  相似文献   

19.
Membrane proteins (MPs) are responsible for the interface between the exterior and the interior of the cell. These proteins are implicated in numerous diseases, such as cancer, cystic fibrosis, epilepsy, hyperinsulinism, heart failure, hypertension and Alzheimer's disease. However, studies on these disorders are hampered by a lack of structural information about the proteins involved. Structural analysis requires large quantities of pure and active proteins. The majority of medically and pharmaceutically relevant MPs are present in tissues at very low concentration, which makes heterologous expression in large-scale production-adapted cells a prerequisite for structural studies. Obtaining mammalian MP structural data depends on the development of methods that allow the production of large quantities of MPs. This review focuses on the different heterologous expression systems, and the purification strategies, used to produce large amounts of pure mammalian MPs for structural proteomics.  相似文献   

20.
The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single‐step reaction involving a solvent molecule, a general base/acid, and a mono‐ or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal‐binding motif (HEXXH), which includes two metal‐binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ~130–270‐residue catalytic domains, which are usually preceded by N‐terminal pro‐segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C‐terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N‐terminal subdomain spanning a five‐stranded β‐sheet, a backing helix, and an active‐site helix. The latter contains most of the metal‐binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C‐terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met‐turn—and a C‐terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号