首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aleutian mink disease virus (AMDV) causes severe disease in farmed mink (Neovison vison) worldwide. In Denmark, AMDV in farmed mink has been confined to the northern part of the mainland since 2002. From 1998 to 2009, samples from 396 free-ranging mink were collected from mainland Denmark, and a low AMDV antibody prevalence (3% of 296) was found using countercurrent immune electrophoresis. However, on the island of Bornholm in the Baltic Sea, a high prevalence (45% of 142 mink) was detected in the free-ranging mink. Aleutian mink disease virus was detected by polymerase chain reaction in 32 of 49 antibody-positive free-ranging mink on Bornholm, but not in mink collected from other parts of Denmark. Sequence analysis of 370 base pairs of the nonstructural gene of the AMDV of 17 samples revealed two clusters with closest similarity to Swedish AMDV strains.  相似文献   

2.

Background

Infectious diseases can often be of conservation importance for wildlife. Spillover, when infectious disease is transmitted from a reservoir population to sympatric wildlife, is a particular threat. American mink (Neovison vison) populations across Canada appear to be declining, but factors thus far explored have not fully explained this population trend. Recent research has shown, however, that domestic mink are escaping from mink farms and hybridizing with wild mink. Domestic mink may also be spreading Aleutian disease (AD), a highly pathogenic parvovirus prevalent in mink farms, to wild mink populations. AD could reduce fitness in wild mink by reducing both the productivity of adult females and survivorship of juveniles and adults.

Methods

To assess the seroprevalence and geographic distribution of AD infection in free-ranging mink in relation to the presence of mink farms, we conducted both a large-scale serological survey, across the province of Ontario, and a smaller-scale survey, at the interface between a mink farm and wild mink.

Conclusions/Significance

Antibodies to AD were detected in 29% of mink (60 of 208 mink sampled); however, seroprevalence was significantly higher in areas closer to mink farms than in areas farther from farms, at both large and small spatial scales. Our results indicate that mink farms act as sources of AD transmission to the wild. As such, it is likely that wild mink across North America may be experiencing increased exposure to AD, via disease transmission from mink farms, which may be affecting wild mink demographics across their range. In light of declining mink populations, high AD seroprevalence within some mink farms, and the large number of mink farms situated across North America, improved biosecurity measures on farms are warranted to prevent continued disease transmission at the interface between mink farms and wild mink populations.  相似文献   

3.
The diversity of 11 microsatellite loci was examined to estimate the genetic variability of ranch and feral American minkNeovison vison (Schreber, 1777) in Poland. Samples were collected from 10 mink farms (182 individuals) and from 5 areas in the north-eastern part of the country (87 individuals). At each examined locus the observed heterozygosity (H o) was lower than the expected heterozygosity (H e). Feral mink showed lower genetic variability than ranch mink; however, in the former group the mean value of the inbreeding coefficient (F IS=0.306) was higher than in the latter (0.242). These results demonstrated that feral and ranch mink belong to two genetically close but separate groups. Genetic differences were identified between mink colour breeds but not between animals from particular farms. The height of the modal values of ΔK indicated the presence of four genetic clusters: (1) farmed mink sapphire, (2) farmed mink standard and pastel, (3) farmed mink pearl and (4) feral mink. Assignment of mink individuals using assignment test, STRUCTURE and GeneClass 2.0. revealed that 12–16% of the feral mink group are likely to be ranch mink escapees. It may be concluded that approximately 30 years after the start of the expansion of feral mink in north-eastern Poland, this wild-living population exists without a major input of individuals bred on fur farms.  相似文献   

4.
5.
The release of domesticated organisms into natural populations may adversely affect these populations through predation, resource competition, and the introduction of disease. Additionally, the potential for hybridization between wild and domestic conspecifics is of great concern because it can alter the evolutionary integrity of the affected populations. Wild American mink ( Neovison vison ) populations may be threatened not only by competition for resources with domestic mink originating from farms, but by breeding with such escapees. Using 10 microsatellite loci, we genotyped mink from Ontario, Canada, sampled from two farms, two putatively mixed populations in regions surrounding the mink farms, and two wild populations with no recent history of mink farming. Using individual-based Bayesian population assignment, we identified four population clusters, including one wild, and three domestic populations. The latter were not clustered by farm but rather by distinct line-bred colour phases. Population clustering also identified domestic and hybrid mink in the free-ranging populations. Nearly two-thirds of the mink sampled in the two putatively mixed populations (78% and 43%) were either farm escapees or descendants of escapees. Principal components analysis of allele frequencies supported our Bayesian assignment results. The power of our assignment test was assessed using simulated hybrid genotypes which suggested that our overall correct classification rate was 96.2%. The overwhelming presence of domestic animals and their hybridization with mink in natural populations is of great concern for the future sustainability of wild mink populations.  相似文献   

6.
Control of invasions is facilitated by their early detection, but this may be difficult when invasions are cryptic due to similarity between invaders and native species. Domesticated conspecifics offer an interesting example of cryptic invasions because they have the ability to hybridize with their native counterparts, and can thus facilitate the introgression of maladaptive genes. We assessed the cryptic invasion of escaped domestic American mink (Neovison vison) within their native range. Feral mink are a known alien invader in many parts of the world, but invasion of their native range is not well understood. We genetically profiled 233 captive domestic mink from different farms in Ontario, Canada and 299 free‐ranging mink from Ontario, and used assignments tests to ascertain genetic ancestries of free‐ranging animals. We found that 18% of free‐ranging mink were either escaped domestic animals or hybrids, and a tree regression showed that these domestic genotypes were most likely to occur south of a latitude of 43.13°N, within the distribution of mink farms in Ontario. Thus, domestic mink appear not to have established populations in Ontario in locations without fur farms. We suspect that maladaptation of domestic mink and outbreeding depression of hybrid and introgressed mink have limited their spread. Mink farm density and proximity to mink farms were not important predictors of domestic genotypes but rather, certain mink farms appeared to be important sources of escaped domestic animals. Our results show that not all mink farms are equal with respect to biosecurity, and thus that the spread of domestic genotypes can be mitigated by improved biosecurity.  相似文献   

7.
The correlation between the skin size of Mustela vison mink and the combination of the alleles of aleutian colour gene has been shown. The studied relation can be presented as ppAa > ppAA > ppaa.  相似文献   

8.
Captive animals are often provided with cage enrichments in order to improve their welfare. Swimming water is an often-discussed requirement for farmed mink. The present study aimed to give insight into the value of swimming water for farmed mink by measuring anticipatory and stereotypical behaviour in subjects raised and housed in the presence and absence of swimming water and in subjects that were deprived of swimming water.The major findings of the present experiments are that: (1) there was no significant difference in anticipatory behaviour between subjects reared and housed in the presence or absence of swimming water; nor was there a significant difference in anticipatory behaviour after removing the water for 2.5 weeks, (2) there was no significant difference in stereotypical behaviour in winter in the presence, absence and after 2.5 months deprivation of swimming water, and finally, (3) there was no significant correlation between anticipatory activity and stereotypical behaviour.The results suggest that mink might not experience consequences, in the sense of increased reward-sensitivity or stereotypy levels, due to the absence of swimming water if they never experienced this incentive before, and that swimming water and an empty bath, such as used in this experiment, might be equally valued incentives for mink.  相似文献   

9.
We studied a group housing system as an alternative to the traditional pair housing of juvenile mink. The focus was on both the welfare and production of mink. The pairs were housed in standard mink cages, whereas the groups were in row cage systems consisting of three standard mink cages connected to each other. The welfare of the mink was evaluated by behavioural observations (stereotypies and social contacts), evaluation of the incidence of scars assumed to be caused by biting, and adrenal function (serum cortisol level after adrenocorticotropic hormone (ACTH) administration and adrenal mass). Feed consumption, pelt length, quality and price were used for comparing the two housing systems from the economic point of view. Although the incidence of scars showed that there might have been more aggressive behaviour among the group-housed than among the pair-housed mink, this was not observed unambiguously in behavioural observations, and, at least, aggression did not cause mortality or serious injuries to the animals as has been observed in some earlier studies. In addition, the housing system did not affect pelt size, and, although the quality of the pelts was slightly lower in the group than in pair-housed mink, there was only a tendency for lower pelt prices. The lower pelt prices in the group-housed mink might even be partially compensated for by the group-housed mink eating 10% to 20% less in the late autumn, due to thermoregulatory benefits, than their pair-housed conspecifics. The results on the frequency of stereotypic behaviour (but not adrenal function) suggest that the group-housed animals were possibly less stressed than the pair-housed animals. Group housing of juvenile farmed mink in a row cage system cannot be recommended before the effects on welfare and production are clarified in further studies.  相似文献   

10.
In mink, recessive and dominant genes carry standard colors from generation to generation but breeding and cross breeding of naturally occurring mutations (color changes) has resulted in farmed animals bearing colors that do not exist in nature. The silver blue color type is one of the most used recessive mutations within mink fur farming being part of some of the popular color types which combine more recessive mutations. We report here the mapping of the 'silver' gene on MVI3 by means of the first linkage genetic map in the American mink (Mustela vison). A Canis familiaris BAC clone containing the melanophilin gene (which generates 'silver-like' phenotype in dog) was in situ cross-hybridized onto the mink chromosomes and the result strongly supports the linkage data. Therefore the silver phenotype in the American mink presumably involves the melanophilin gene (MLPH).  相似文献   

11.
The study aimed to (i) describe the response of farmed mink towards familiar and novel food, and (ii) assess the suitability of using novel food in order to measure fear responses in mink. A total of 48 farm mink from two behaviourally selected genetic lines were caged individually with one standardised daily feeding. The experimental feedings were carried out in a balanced order on 2 successive days. Behaviour of the mink was video recorded for 10min after food provision. In general, the mink were reluctant to approach and eat the novel food compared to familiar food, which indicates a neophobic feeding strategy, i.e. increased latency to come close to (P<0.01) and eat (P<0.001) the novel food, and a higher frequency (P<0.001) and a longer duration (P<0.001) of sniffing. Provision of unknown food items may be used to evaluate fear responses in mink since mink respond reluctantly towards novel food. However, high inter-individual variation in the present study obliterated a previously shown difference between confident and fearful mink, suggesting that this method for measuring fear responses in mink is appropriate only on a large animal material.  相似文献   

12.
Described herein, the first microsatellite linkage map for the American mink consists of 85 microsatellite markers resolved into 17 linkage groups. The map was constructed using 92 F(1) progeny from five sire families created by crossing mink with different colour types. The linkage groups ranged from 0 to 137 cM. These linkage groups were assigned to 12 of the 14 mink autosomes using a somatic cell hybrid panel. The total map covered 690 sex-averaged Kosambi units with an average marker spacing of 8 cM. This map will facilitate further genetic mapping of monogenic characters and QTL.  相似文献   

13.
Multivariate statistical techniques were used to examine craniometric variation within and between ranch and feral populations of American mink (Mustela vison). An examination of variation between ranches revealed that differences are greater between ranches than within ranches, although all comparisons were statistically significant. There is highly significant variation within a population of mink sampled from a single ranch during a short time period; female mink of different pelt colour are differentiable by their skull shape but not by skull size. This offers evidence for a genetic background to cranial variation in ranch mink. Cranial sexual dimorphism is reduced in ranch mink, when compared to feral populations, and size accounts for a lesser proportion of the variation between the sexes in ranched populations. In addition, the skulls of ranched mink are larger, have a relatively shorter palate and a relatively narrower postorbital constriction compared to their feral counterparts. We believe this reduced dimorphism to be a product of relaxed sexual selection, lack of resource competition and selective breeding for larger specimens of both sexes within ranch populations.  相似文献   

14.
A major outbreak of canine distemper virus (CDV) in Danish farmed mink (Neovison vison) started in the late summer period of 2012. At the same time, a high number of diseased and dead wildlife species such as foxes, raccoon dogs, and ferrets were observed. To track the origin of the outbreak virus full-length sequencing of the receptor binding surface protein hemagglutinin (H) was performed on 26 CDV''s collected from mink and 10 CDV''s collected from wildlife species. Subsequent phylogenetic analyses showed that the virus circulating in the mink farms and wildlife were highly identical with an identity at the nucleotide level of 99.45% to 100%. The sequences could be grouped by single nucleotide polymorphisms according to geographical distribution of mink farms and wildlife. The signaling lymphocytic activation molecule (SLAM) receptor binding region in most viruses from both mink and wildlife contained G at position 530 and Y at position 549; however, three mink viruses had an Y549H substitution. The outbreak viruses clustered phylogenetically in the European lineage and were highly identical to wildlife viruses from Germany and Hungary (99.29% – 99.62%). The study furthermore revealed that fleas (Ceratophyllus sciurorum) contained CDV and that vertical transmission of CDV occurred in a wild ferret. The study provides evidence that wildlife species, such as foxes, play an important role in the transmission of CDV to farmed mink and that the virus may be maintained in the wild animal reservoir between outbreaks.  相似文献   

15.
【目的】本研究旨在研究水貂肠炎病毒(mink enteritis virus,MEV)的基因组遗传进化特征。【方法】对采自山东境内水貂养殖场的109份水貂腹泻样品进行MEV的分离和鉴定,利用血凝和血凝抑制试验、多步生长曲线绘制以及蛋白的三级结构模拟等,对分离毒株生物学特性进行分析,通过重叠PCR对分离株进行全基因扩增,使用MegAlign进行序列同源性比对分析,利用DNAMANV6对基因组5’末端和3’末端回文结构进行预测,应用MEGAV6进行遗传进化分析。【结果】共分离得到5株病毒,经电镜观察和间接免疫荧光试验鉴定为MEV毒株,分别命名为MUTQS-1-5,GenBank登录号分别为OK275645、OK275646、OK275647、OK275648和OK275649;各分离株5’-和3’-UTR分别由长回文序列组成,具有典型的细小病毒基因组末端的茎环样结构,NS1和VP2基因的推导氨基酸序列存在多个非同义突变位点,其中NS1蛋白的E/Q545V位氨基酸突变,以及VP2蛋白的F267Y、Y324I位氨基酸突变为首次在MEV上发现;生物学特性分析表明,上述突变并未明显改变病毒的血凝及...  相似文献   

16.
Corynosoma strumosum (Acanthocephala), a widespread parasite of pinnipeds, is reported in marine foraging North American mink (Neogale vison) and river otter (Lontra canadensis) on Vancouver Island, British Columbia. This is the first confirmed case of infection by C. strumosum in river otters on the west coast of North America and may be the first confirmed case of infection in wild North American mink; C. strumosum has previously been reported in river otters in Europe (Lutra lutra) and in farmed mink fed with marine fish. We also detected a case of acanthocephalan associated peritonitis in a juvenile mink. Furthermore, though infections with Corynosoma spp. are often assumed to be accidental in mustelids, some C. strumosum individuals found in mink showed signs of reproductive activity. These findings indicate that mink may be a competent definitive host and represent a reservoir in coastal habitats although further research is needed to confirm this. Investigating whether river otters may be competent hosts and determine the prevalence of infection in coastal populations would determine the potential implications of C. strumosum for coastal otters and minks. Our report indicates that mink and possibly river otter living in coastal areas are vulnerable to this previously unreported parasitic infection with mortality risk, at least in juvenile individuals.  相似文献   

17.
The immune system is considered to be an energetically expensive component of an individual's life history. Investment in the immune system can depend on the environment that an individual finds itself in. The American mink, Neovison vison, exists in the natural environment and on fur farms. The natural environment and mink farm differ in many ways, such as wild mink being exposed to many parasites that are less prevalent and less abundant in the domestic environment because of veterinary care. We collected free‐ranging mink from commercial trappers and domestic mink from fur farmers in Ontario and Nova Scotia, Canada, and examined relative spleen mass. Wild male mink had larger spleens than domestic mink in Nova Scotia, with a similar trend in Ontario. Female mink that escaped from farms (feral) in Nova Scotia had significantly larger spleens than their domestic counterparts on the farms. Both of these results are consistent with the prediction that the natural environment contains parasites and pathogens that require enhanced investment in the immune system. In Nova Scotia, females had larger spleens than males, whether considering wild or domestic populations. Finally, wild mink showed greater condition dependence of spleen mass than domestic populations. Further investigations should include experimental approaches such as providing veterinary care to wild populations to assess the effects of parasites and pathogens on the immune system. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 624–631.  相似文献   

18.
Aim Invasive alien species usually exhibit very high adaptation and rapid evolution in a new environment, but they often have low levels of genetic diversity (invasive species paradox). Genetic variation and population genetic structure of feral American mink, Neovison vison, in Poland was investigated to explain the invasion paradox and to assess current gene flow. Furthermore, the influence of mink farming on adaptation of the feral population was evaluated by comparing the genetic structure of feral and ranch mink. Location Samples from feral mink were collected in 11 study areas in northern and central Poland and from ranch mink at 10 farms distributed throughout the country. Methods A 373‐bp‐long mtDNA control region fragment was amplified from 276 feral and 166 ranch mink. Results Overall, 31 haplotypes, belonging to two groups from genetically diverse sources, were detected: 11 only in feral mink, 12 only in ranch mink and eight in both. The genetic differentiation of feral mink from the trapping sites was high, while that among ranch mink from various farms was moderate. There was no significant relationship between genetic and geographic distance. The number of trapping sites where given haplotypes occurred correlated with the number of farms with these haplotypes. The mink from two sites were the most divergent, both from all other feral mink and from ranch mink. Comparison of mtDNA and microsatellite differentiation suggests male‐biased dispersal in this species. Main conclusions American mink in Poland exhibit high genetic diversity and originate from different source populations of their native range. The process of colonization was triggered by numerous escapees from various farms and by immigrants from Belarus. The genetic structure of local feral mink populations was shaped by the founder effect and multiple introductions. The genomic admixture that occurred during mixing of different populations might have increased the fitness of individuals and accelerated the invasiveness of this species.  相似文献   

19.

Background

Aleutian mink disease has major economic consequences on the mink farming industry worldwide, as it causes a disease that affects both the fur quality and the health and welfare of the mink. The virus causing this disease is a single-stranded DNA virus of the genus Amdoparvovirus belonging to the family of Parvoviridae. In Denmark, infection with AMDV has largely been restricted to a region in the northern part of the country since 2001, affecting only 5% of the total Danish mink farms. However, in 2015 outbreaks of AMDV were diagnosed in all parts of the country. Initial analyses revealed that the out breaks were caused by two different strains of AMDV that were significant different from the circulating Danish strains. To track the source of these outbreaks, a major investigation of global AMDV strains was initiated.

Methods

Samples from 13 different countries were collected and partial NS1 gene was sequenced and subjected to phylogenetic analyses.

Results

The analyses revealed that AMDV exhibited substantial genetic diversity. No clear country wise clustering was evident, but exchange of viruses between countries was revealed. One of the Danish outbreaks was caused by a strain of AMDV that closely resembled a strain originating from Sweden. In contrast, we did not identify any potential source for the other and more widespread outbreak strain.

Conclusion

To the authors knowledge this is the first major global phylogenetic study of contemporary AMDV partial NS1 sequences. The study proved that partial NS1 sequencing can be used to distinguish virus strains belonging to major clusters. The partial NS1 sequencing can therefore be a helpful tool in combination with epidemiological data, in relation to outbreak tracking. However detailed information on farm to farm transmission requires full genome sequencing.
  相似文献   

20.
Transmissible mink encephalopathy (TME) is a rare disease of the North American mink, which has never been successfully transmitted to laboratory mice. We generated transgenic mice expressing the mink prion protein (PrP) and inoculated them with TME or the mouse-adapted scrapie strain 79A. TME infected mink PrP-transgenic mice on a murine PrP knockout background. The absolute species barrier between the infectious agent of TME and mice was therefore broken. Following TME and 79A infection of mice carrying both mink and murine PrP(C), only proteinase-resistant PrP homologous to the incoming agent was detectable. The presence of the murine PrP(C) prolonged the incubation time of TME substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号