首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Polyporus umbellatus is one of the precious medicinal fungi, with sclerotia used as a diuretic agent and antidote in China for many years. This has led to the present interest in producing sclerotia of P. umbellatus in the laboratory due to a decreased abundance in natural sources. Here, we investigated the determining factors for sclerotial formation in P. umbellatus. Five carbon sources, namely, maltose, fructose, glucose, sucrose and soluble starch with different initial pH values were evaluated for their effects on mycelial growth and sclerotial development of P. umbellatus. Maltose, fructose and glucose could induce sclerotial formation of P. umbellatus. Sucrose and soluble starch could stimulate growth of the fungus but had no effect on sclerotial formation. The most efficient sclerotial production occurred with maltose followed by fructose and a pH of 5. In addition, different macroscopically evident characteristics of sclerotial development of P. umbellatus induced by different carbon sources were also observed. Our findings could provide new insights into further research on sclerotial production in P. umbellatus under artificial cultivation.  相似文献   

2.

Background

Polyporus umbellatus sclerotia have been used as a diuretic agent in China for over two thousand years. A shortage of the natural P. umbellatus has prompted researchers to induce sclerotial formation in the laboratory.

Methodology/Principal Finding

P. umbellatus cultivation in a sawdust-based substrate was investigated to evaluate the effect of low temperature conditions on sclerotial formation. A phenol-sulfuric acid method was employed to determine the polysaccharide content of wild P. umbellatus sclerotia and mycelia and sclerotia grown in low-temperature treatments. In addition, reactive oxygen species (ROS) content, expressed as the fluorescence intensity of mycelia during sclerotial differentiation was determined. Analysis of ROS generation and sclerotial formation in mycelia after treatment with the antioxidants such as diphenyleneiodonium chloride (DPI), apocynin (Apo), or vitamin C were studied. Furthermore, macroscopic and microscopic characteristics of sclerotial differentiation were observed. Sclerotia were not induced by continuous cultivation at 25°C. The polysaccharide content of the artificial sclerotia is 78% of that of wild sclerotia. In the low-temperature treatment group, the fluorescent intensity of ROS was higher than that of the room temperature (25°C) group which did not induce sclerotial formation all through the cultivation. The antioxidants DPI and Apo reduced ROS levels and did not induce sclerotial formation. Although the concentration-dependent effects of vitamin C (5–15 mg mL−1) also reduced ROS generation and inhibited sclerotial formation, using a low concentration of vitamin C (1 mg mL−1) successfully induced sclerotial differentiation and increased ROS production.

Conclusions/Significance

Exposure to low temperatures induced P. umbellatus sclerotial morphogenesis during cultivation. Low temperature treatment enhanced ROS in mycelia, which may be important in triggering sclerotial differentiation in P. umbellatus. Moreover, the application of antioxidants impaired ROS generation and inhibited sclerotial formation. Our findings may help to provide new insights into the biological mechanisms underlying sclerotial morphogenesis in P. umbellatus.  相似文献   

3.
Growth and morphogenesis transformation in Polyporus umbellatus were examined in the presence of various pharmacological compounds, to investigate signal transduction pathways that influence the development of sclerotia. Both the calcium channel blocker nifedipine and the calcium ionophor A23187 reduced sclerotial production in P. umbellatus; four classes of Ca2+ signal agent—including calcium chelators, calcium channel blockers, calcium ionophors and calmodulin inhibitors—were further studied. Among them, EGTA and BAPTA, as calcium chelators, exhibited a complete inhibitory effect on sclerotial formation, among the levels tested. Calcium channel blockers and calcium ionophors at the concentrations used in this study could not eliminate sclerotia formation completely, but did greatly reduce sclerotial production. Notoginsenoside in dosages >250 μg/ml produced a significant negative effect on mycelial growth, and it prevented sclerotial formation entirely at a dosage of 500 μg/ml; no other drug influenced vegetative growth at all. The calcium ionophor A23187 did not decrease sclerotial mean weight at low doses (20 nM); at higher doses (200 nM), however, sclerotial development was significantly reduced, albeit not completely halted. The CaM inhibitors (W-7 and chlorpromazine) could each completely stop sclerotial formation. Using Fluo-3/AM as the indicator of cytosolic free calcium, the Ca2+ content in the cytoplasm was found to have decreased significantly when hyphae were treated with different drugs, and there was no active Ca2+ signal in the sclerotial mycelium. In general, the results suggest that Ca2+ signal transduction may play an important role in sclerotial formation in P. umbellatus.  相似文献   

4.
Sclerotia of Polyporus umbellatus is a traditional Chinese herb. The sclerotia can survive in soils for long time and their growth depends upon a symbiotic association with Armillariella mellea. But it is unclear whether other fungi reside or play a role in the sclerotia. In this study, wild sclerotial samples were collected from seven provinces, which span southwest to northeast China. A total of 148 fungal isolates were recovered from the sclerotia of P. umbellatus and classified into 19 morphological taxa. Seventeen belonged to five genera: Fusarium, Eurotium, Penicillium, Geomyces and Mucor. The fungi found within the sclerotia varied depending on the province from which they were collected. The possible role of these fungi is discussed.  相似文献   

5.
The sclerotia of Polyporus umbellatus were collected from three locations in Japan and three locations in China. All the collected sclerotia were adhered to by rhizomorphs of the symbionts. When the sclerotium of P. umbellatus was cross sectioned, the internal part of the sclerotium was cream colored, and many black regions surrounding the invading rhizomorphs were observed. The surrounding zone contained string-like, gelatinous masses composed of hyphae, and its outside was brown in color. All isolates were similar in colony morphology and grew well on PDA medium with well-developed rhizomorphs. All the isolates showed typical morphology of Armillaria. The isolated fungi were identified via the ITS region of the nuclear ribosomal DNA sequence. Phylogenetic analysis based on the neighbor-joining method showed that all the isolates clustered with fungi belonging to Armillaria species. Among them, five species (A. sinapina, A. calvescens, A. gallica, A. cepistipes, and A. nabsnona) and the symbiont formed a highly supported clade. We report on the case where Armillaria has a relationship in the sclerotium of Polyporus umbellatus.  相似文献   

6.

Background

Polyporus umbellatus is an important medicinal fungus distributed throughout most area of China. Its wide distribution may have resulted in substantial intraspecific genetic diversity for the fungus, potentially creating variation in its medical value. To date, we know little about the intraspecific genetic diversity of P. umbellatus.

Methodology/Principal Findings

The objective of this research was to assess genetic differences of P. umbellatus from geographically diverse regions of China based on nrDNA ITS and 28S rRNA (LSU, large subunit) sequences. Significant sequence variations in the ITS and LSU sequences were detected. All sclerotial samples were clustered into four clades based on phylogenetic analysis of ITS, LSU and a combined data set of both regions. Heterogeneity of ITS and LSU sequences was detected in 5 and 7 samples respectively. All clone sequences clustered into the same clade except for one LSU clone sequences (from Henan province) which clustered into two clades (Clade I and Clade II). Significant genetic divergence in P. umbellatus was observed and the genetic diversification was greater among sclerotial samples from Shaanxi, Henan and Gansu provinces than among other provinces. Polymorphism of ITS and LSU sequences indicated that in China, P. umbellatus may spread from a center (Shaanxi, Henan and Gansu province) to other regions.

Conclusions/Significance

We found sclerotial samples of P. umbellatus contained levels of intraspecific genetic diversity. These findings suggested that P. umbellatus populations in Shaanxi, Henan and Gansu are important resources of genetic diversity and should be conserved accordingly.  相似文献   

7.
Aims:  To find out which nutritional condition is the determining factor for sclerotial formation of Polyporus umbellatus .
Methods and Results:  The nutritional requirements of 15 carbohydrates, ten nitrogen compounds, eight vitamins and eight mineral elements were studied for their effects on mycelial growth and sclerotial formation of Polyporus umbellatus using the one-factor-at-a-time method. Only fructose could induce sclerotial formation of P. umbellatus . An additional test indicated that nitrogen source categories influenced sclerotial formation significantly and that peptone was found to be the best for sclerotial production. Through an orthogonal matrix test, the effects of carbon/nitrogen factors on sclerotial formation were found be in the order: fructose > interaction between fructose and peptone > peptone. The optimal concentration for sclerotial formation was determined to be 50·0 g l−1 fructose and 4·0 g l−1 peptone.
Conclusions:  Carbon source is the factor determining sclerotial formation of Polyporus umbellatus . Nitrogen source can influence such a morphological transformation significantly. The categories of vitamin and mineral element do not have relationship with the sclerotial formation.
Significance and Impact of the Study:  This study provides the preparatory knowledge for the completely artificial culture of Polyporus umbellatus for its sclerotium.  相似文献   

8.
Growth and development of a wild-type Sclerotinia sclerotiorum isolate were examined in the presence of various pharmacological compounds to investigate signal transduction pathways that influence the development of sclerotia. Compounds known to increase endogenous cyclic AMP (cAMP) levels in other organisms by inhibiting phosphodiesterase activity (caffeine and 3-isobutyl-1-methyl xanthine) or by activating adenylate cyclase (NaF) reduced or eliminated sclerotial development in S. sclerotiorum. Growth in the presence of 5 mM caffeine correlated with increased levels of endogenous cAMP in mycelia. In addition, incorporation of cAMP into the growth medium decreased or eliminated the production of sclerotia in a concentration-dependent manner and increased the accumulation of oxalic acid. Inhibition of sclerotial development was cAMP specific, as exogenous cyclic GMP, AMP, and ATP did not influence sclerotial development. Transfer of developing cultures to cAMP-containing medium at successive time points demonstrated that cAMP inhibits development prior to or during sclerotial initiation. Together, these results indicate that cAMP plays a role in the early transition between mycelial growth and sclerotial development.  相似文献   

9.
Kim TG  Knudsen GR 《Fungal biology》2011,115(4-5):317-325
The biocontrol agent Trichoderma harzianum colonises sclerotia of the plant pathogenic fungus Sclerotinia sclerotiorum. Plating of sclerotia typically has been used to determine the incidence of mycoparasitism, but does not quantify the extent to which individual sclerotia are colonised. We developed a specific PCR primer/probe set for the green fluorescent protein (GFP)-transformant T. harzianum ThzID1-M3, which exhibited high precision and reproducibility. Quantitative real-time PCR was evaluated along with epifluorescence microscopy and image analysis to investigate dynamics of colonisation of sclerotia in non-sterile soil. Amounts of ThzID1-M3 DNA and S. sclerotiorum DNA from entire individual sclerotia were quantified using real-time PCR. Epifluorescence micrographs were captured from sclerotial thin-section samples, and GFP fluorescence from these was quantified using computer image analysis in order to estimate colonisation on a per-sclerotium basis. As determined by either method, ThzID1-M3 colonised sclerotia in soil, and both methods quantified colonisation dynamics over time. In a separate experiment, colonisation of sclerotia on agar plates was observed using confocal laser scanning microscopy to view the GFP-fluorescing hyphae of ThzID1-M3. This method, while highly labour-intensive, provided high spatial resolution of colonisation dynamics. Thus, each method has advantages: microscopy combined with image analysis can provide useful information on the spatial and temporal dynamics of colonisation, while real-time PCR can provide a more precise assessment of the extent of sclerotial colonisation over time and can more easily be used to sample entire sclerotia.  相似文献   

10.
11.
Penicillium thomii PT95 strain was able to form abundant orange, sand-shaped sclerotia in which carotenoids were accumulated. The aim of this work was to determine the effects of copper-induced oxidative stress on the sclerotial differentiation and antioxidant properties of PT95 strain. The results showed that the time of exudates initiation, sclerotial initiation and sclerotial maturation of PT95 strain were advanced in 1–2 days under the copper-induced oxidative stress growth conditions. The analytical results of sclerotial biomass, carotenoids content in sclerotia showed that copper-induced oxidative stress favored the sclerotial differentiation and biosynthesis of carotenoids. Under the copper-induced oxidative stress growth conditions, the total phenolics content and DPPH free radical scavenging activity of sclerotia of this fungus were decreased as compared with the control. However, the oxidative stress induced by a lower amount of CuSO4 in media could enhance significantly the reducing power of sclerotia.  相似文献   

12.
Sclerotinia sclerotiorum is a worldwide pathogen with a broad host spectrum pathogenic to around 400 plant species. Sclerotia formed by S. sclerotiorum serve as resting structures that secure fungal survival in soil for prolonged periods in the absence of a host plant or may help to overcoming periods of unsuitable growth conditions. In the present study, the morphological development of sclerotia was examined by light and scanning electron microscopy of fungal microcultures. Observations from microscopy indicated that, during the first 4 days of culture, the sclerotial primordial originate by dichotomous branching of apical hyphae and from the 5th day mycelial clusters were also observed, indicating the initiation stage of sclerotia formation. From the 6th to the 8th day, sclerotia turned from white to dark color, and water drops (exudates) were observed on their surface. The process of sclerotia formation ended at the 9th day when they were easy to detach from the culture medium and had a black coloration. All the morphological processes involved in the formation of sclerotia by S. sclerotiorum were observed with both light and scanning electron microscopy.  相似文献   

13.
Rhizoctonia solani AG-1 IA is the causal agent of rice sheath blight (RSB) and causes severe economic losses in rice-growing regions around the world. The sclerotia play an important role in the disease cycle of RSB. In this study, we report the effects of reactive oxygen species (ROS) and trehalose on the sclerotial development of R. solani AG-1 IA. Correlation was found between the level of ROS in R. solani AG-1 IA and sclerotial development. Moreover, we have shown the change of ROS-related enzymatic activities and oxidative burst occurs at the sclerotial initial stage. Six genes related to the ROS scavenging system were quantified in different sclerotial development stages by using quantitative RT-PCR technique, thereby confirming differential gene expression. Fluorescence microscopy analysis of ROS content in mycelia revealed that ROS were predominantly produced at the hyphal branches during the sclerotial initial stage. Furthermore, exogenous trehalose had a significant inhibitory effect on the activities of ROS-related enzymes and oxidative burst and led to a reduction in sclerotial dry weight. Taken together, the findings suggest that ROS has a promoting effect on the development of sclerotia, whereas trehalose serves as an inhibiting factor to sclerotial development in R. solani AG-1 IA.  相似文献   

14.
宋超  郭顺星 《菌物学报》2013,32(4):690-697
利用3'-RACE-PCR方法首次从药用真菌猪苓中克隆得到与真菌形态发育相关的溶血素基因。结果表明,猪苓溶血素基因的全长cDNA为744bp,其中编码区占447bp,共编码148个氨基酸,推测其分子量约为15.79kDa,理论等电点为4.89。推定的猪苓溶血素蛋白具有与杨树菇溶血素类蛋白家族相同的结构域和功能位点,两者同源性为60%。系统进化树结果显示猪苓溶血素隶属于担子菌类群。实时荧光定量PCR分析结果表明在菌核形成初期猪苓溶血素基因表达量较高,且显著高于菌丝体中猪苓溶血素基因的转录水平,说明溶血素基因参与了猪苓菌核的形态发育。  相似文献   

15.
Sclerotia produced by a single isolate of Rhizoctonia solani AG3PT were buried in small plot experiments to investigate the effects of sclerotial production method, soil type and burial depth on sclerotial viability in field soil. The factor with the greatest effect on sclerotial viability, defined as the percentage of sclerotia germinating on agar following retrieval, in all experiments was the duration of burial. After 18 months, on average across all experiments, 20% of retrieved sclerotia were viable. A comparison between sclerotia produced in vitro on malt yeast extract agar and in vivo using micropropagated tubers in field soil found no significant differences between the two production methods on sclerotial viability. Burial in field soil at 20‐cm depth was found to significantly reduce sclerotial viability to 50% compared to 60% at 5 cm. In two pot experiments, amending the growing medium and soil with increasing inoculum densities of R. solani was found to increase stem number, stem canker and black scurf severity regardless of whether this soil‐borne inoculum was derived from mycelium or sclerotia. Black scurf incidence and severity were assessed 30–32 days posthaulm destruction and found to be similar for a range of sclerotial soil‐borne inoculum densities (1.0 × 10?1 g/kg d.w. soil to 6 × 10?3 g/kg d.w. soil). The significance of these findings in relation to pathogen survival, detection in soil and disease development is discussed.  相似文献   

16.
Formation of sclerotia in a strain of Sclerotinia libertiana Fuckel using Czapek-Dox agar medium was highest at pH 4.0~6.0 and at 22~25°C. The response was better under darkness than under light. However, when a potato-extract medium was used the optimum temperature range extended, and even at 15~27°C mature sclerotia formed. The addition of indole-3-acetic acid (IAA) to the Czapek-Dox medium containing riboflavine stimulated the formation of sclerotia under fluorescent light. Though iodoacetic acid, a ?SH reagent, also had a stimulatory effect, cysteine had little inhibitory effect on sclerotial formation. Formation was markedly inhibited by p-aminobenzoic acid (PABA), especially in the presence of tyrosine or tryptophan, and excess ammonium salts in the medium also produced an inhibitory effect. It was assumed that accumulation of an intermediary metabolite with high reactivity with ?SH groups was necessary for sclerotial formation, but PABA and excess ammonium salts inhibited the accumulation.  相似文献   

17.
Aspergillus flavus differentiates to produce asexual dispersing spores (conidia) or overwintering survival structures called sclerotia. Results described here show that these two processes are oppositely regulated by density-dependent mechanisms and that increasing the cell density (from 101 to 107 cells/plate) results in the lowest numbers of sclerotial and the highest numbers of conidial. Extract from spent medium of low-cell-density cultures induced a high-sclerotium-number phenotype, whereas high-cell-density extract increased conidiation. Density-dependent development is also modified by changes in lipid availability. Exogenous linoleic acid increased sclerotial production at intermediate cell densities (104 and 105 cells/plate), whereas oleic and linolenic acids inhibited sclerotium formation. Deletion of Aflox encoding a lipoxygenase (LOX) greatly diminished density-dependent development of both sclerotia and conidia, resulting in an overall increase in the number of sclerotia and a decrease in the number of conidia at high cell densities (>105 cells/plate). Aflox mutants showed decreased linoleic acid LOX activity. Taken together, these results suggest that there is a quorum-sensing mechanism in which a factor(s) produced in dense cultures, perhaps a LOX-derived metabolite, activates conidium formation, while a factor(s) produced in low-density cultures stimulates sclerotium formation.  相似文献   

18.
A mutant strain EMS-1 ofSclerotium rolfsii lacking the ability to develop mature sclerotia was isolated following chemical mutagenesis of macerated sclerotia with ethyl methane-sulfonate. The mutant failed to form sclerotia even in the presence of lactose, threonine or iodo-acetic acid which promoted sclerotial development in the wild strain and the UV-8 mutant. EMS-1 exhibited higher (1.5 – 3.0 times) cellulase and hemicellulase activity compared to the wild strain. Possible correlation between sclerotial morphogenesis and cellulase and/or oxalic acid production is discussed.  相似文献   

19.
The effects of substrate composition and temperature on myceilal growth and sclerotium production in Grlfola umbellate (Pers.) Pilaet were Investigated In the present study. The Induction of sclerotla of G. umbellate was affected greatly by the type of medium, as well as the type of carbon source. Malt-extract agar was able to induce the production of sclerotia. The production of sclerotia was also observed when the carbon source in the GPC agar medium (glucose 20 g/L, peptone 6 g/L, corn steep liquor 10 g/L, and agar 15 g/L) was replaced with glycerol or mannitol. Altering the composition of the GPC medium with milk powder, thiamine hydrochlorlde, extract of Armlllarla mellea, active clay, dlatomite, kaolin, or arginlne did not induce the production of sclerotla. A temperature range of 18-25 ℃ was suitable for both mycellai growth and sclerotium formation. Glycerol significantly Induced slerotium formation on nutrient supplemented with sawdust substrates In bottle culture. 24S-Polyporusterone A and polyporusterone B were assayed In samples of natural and cultured sclerotla. Both natural and cultured sclerotla contained 24S- polyporusterone A and polyporusterone B.  相似文献   

20.
A split-plate method with two media in different concentrations in each compartment was applied for the mycelial growth of four strains of Suillus luteus, S. grevillei, S. granulatus, and S. bovinus. As the glucose concentration in the A-side (the side containing higher concentrations of glucose) increased, the mycelial growth in both A- and B-sides (the side containing lower concentrations of glucose) increased. The mycelial density in both sides and B/A ratio (the ratio of the mycelial growth in the B-side to that in the A-side) also increased, and the colony morphology changed. In both A- and B-sides, the colony area reached maximum at 10g/l glucose in the A-side in most cases and at 33.3g/l in several cases. The results indicated nutrients are translocated from mycelia in the A-side to those in the B-side. High concentration of phosphate or fructose + glucose in the A-side induced better mycelial growth in the B-side. Addition of high concentrations of phosphate to one side enhanced mycelial growth in the other side. Low-temperature incubation promoted the growth in the B-side. Our split-plate culture method will be useful for qualitative study of translocation in ectomycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号