首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An effective transformation procedure for Kitasatospora setae was established based on transconjugation from Escherichia coli ET12567 (pUZ8002) using a C31-derived integration vector, pSET152, containing oriT and attP fragments. While no transconjugation was observed under the standard transconjugation conditions for Streptomyces species, sufficient transconjugation (>1×10-6) was achieved on ISP4 medium containing 30 mM MgCl2 using a 25- to 125-fold excess of E. coli donor cells. In addition, the sequence and location of the chromosomal integration site attB of K. setae was identified for the first time in genera of non-Streptomyces actinomycetes. K. setae contains a single C31 attB site. Similar to the case of Streptomyces species, the attB site of K. setae is present within an ORF encoding a pirin-homolog, but the K. setae-attB sequence deviates slightly from the consensus sequence of Streptomyces attB sequences.  相似文献   

2.
We have previously shown that, in vivo, the integration system based on the gene encoding the TG1 integrase and the corresponding attB TG1 and attP TG1 sites works well not only in Streptomyces strains, but also in Escherichia coli. Furthermore, the attachment sites for TG1 integrase are distinct from those of ϕC31 integrase. In this report, we expressed TG1 integrase as a GST-TG1 integrase fusion protein and then used affinity separation and specific cleavage to release purified integrase. Conditions for in vitro recombination were established using the purified TG1 integrase and its cognate attP TG1 and attB TG1 sites. TG1 integrase efficiently catalyzed a site-specific recombination between attB TG1 and attP TG1 sites irrespective of their substrate topology. The minimal sequences of attP TG1 and attB TG1 sites required for the substrates of TG1 integrase were demonstrated to be 43 and 39-bp, respectively. These results provide the basic features of the TG1 integrase system to be used as biotechnological tools, as well as to unravel the mechanism of the serine integrase.  相似文献   

3.
The integrase from the Streptomyces bacteriophage φC31 carries out efficient recombination between an attP site in the phage genome and an attB site in the host chromosome. In the present study, we have used the φC31 integrase system to mediate site-specific recombination in the cultured silkworm cell line BmN4. A plasmid containing a cDNA encoding DsRed flanked by two φC31 attP sites was co-transfected together with a helper plasmid encoding the φC31 integrase into a cell line in which φC31 attB sites inserted between a baculovirus IE2 promoter, and a polyadenylation signal are present in one chromosome. Seven days after transfection, expression of DsRed was observed in transformed cells. Nucleotide sequence analysis demonstrated that the expected recombination between the attB and attP sites had been precisely carried out by the φC31 integrase. These results indicate that the φC31 site-specific recombination system should be widely applicable for efficient site-specific gene integration into silkworm chromosomes.  相似文献   

4.
Phage integrases are enzymes that catalyze unidirectional site-specific recombination between the attachment sites of phage and host bacteria, attP and attB, respectively. We recently developed an in vivo intra-molecular site-specific recombination system based on actinophage TG1 serine-type integrase that efficiently acts between attP and attB on a single plasmid DNA in heterologous Escherichia coli cells. Here, we developed an in vivo inter-molecular site-specific recombination system that efficiently acted between the att site on exogenous non-replicative plasmid DNA and the corresponding att site on endogenous plasmid or genomic DNA in E. coli cells, and the recombination efficiencies increased by a factor of ~101–3 in cells expressing TG1 integrase over those without. Moreover, integration of attB-containing incoming plasmid DNA into attP-inserted E. coli genome was more efficient than that of the reverse substrate configuration. Together with our previous result that purified TG1 integrase functions efficiently without auxiliary host factors in vitro, these in vivo results indicate that TG1 integrase may be able to introduce attB-containing circular DNAs efficiently into attP-inserted genomes of many bacterial species in a site-specific and unidirectional manner. This system thus may be beneficial to genome engineering for a wide variety of bacterial species.  相似文献   

5.
Actinoplanes teichomyceticus produces teicoplanin, which is a glycopeptide antibiotic for Gram-positive pathogenic bacteria and methicillin-resistant Staphylococcus aureus (MRSA). For a molecular genetic study of A. teichomyceticus, an effective transformation method using the conjugal transfer of DNA from E. coli to spores of A. teichomyceticus was established for the first time, based on the bacteriophage ϕC31 att/int system, in the genus of Actinoplanes. The high frequency of transconjugation was obtained on MS medium containing 40 mM MgCl2, using 1.25 × 108 E. coli donor cells and 105 spores without a heat treatment. In addition, by cloning and sequencing the attB site A. teichomyceticus was shown to contain a single attB site within an ORF coding for a pirin homolog. Also, its attB site sequence showed high homology to that of Streptomyces lividans, unlike the case of Kitasatospora setae despite being a non-Streptomyces actinomycete, which seems to be closely related to the high transconjugation frequency of A. teichomyceticus.  相似文献   

6.

Background  

The large serine recombinase phiC31 from broad host range Streptomyces temperate phage, catalyzes the site-specific recombination of two recognition sites that differ in sequence, typically known as attachment sites attB and attP. Previously, we characterized the phiC31 catalytic activity and modes of action in the fission yeast Schizosaccharomyces pombe.  相似文献   

7.
Streptomyces phage φBT1 integrates its genome into the attB site of the host chromosome with the attP site to generate attL and attR. The φBT1 integrase belongs to the large serine recombinase subfamily which directly binds to target sites to initiate double strand breakage and exchange. A recombination directionality factor (RDF) is commonly required for switching integration to excision. Here we report the characterization of the RDF protein for φBT1 recombination. The RDF, is a phage-encoded gp3 gene product (28 KDa), which allows efficient active excision between attL and attR, and inhibits integration between attB and attP; Gp3 can also catalyze topological relaxation with the integrase of supercoiled plasmids containing a single excision site. Further study showed that Gp3 could form a dimer and interact with the integrase whether it bound to the substrate or not. The synapse formation of attL or attR alone with integrase and Gp3 showed that synapsis did not discriminate between the two sites, indicating that complementarity of central dinucleotides is the sole determinant of outcome in correct excision synapses. Furthermore, both in vitro and in vivo evidence support that the RDFs of φBT1 and φC31 were fully exchangeable, despite the low amino acid sequence identity of the two integrases.  相似文献   

8.
The serine-type phage integrase is an enzyme that catalyzes site-specific recombination between two attachment sites of phage and host bacterial genomes (attP and attB, respectively) having relatively short but distinct sequences without host auxiliary factor(s). Previously, we have established in vivo and in vitro site-specific recombination systems based on the serine-type integrase produced by actinophage TG1 and determined the minimal sizes of attP TG1 and attB TG1 sites required for the in vitro TG1 integrase reaction as 43- and 39-bp, respectively. Here, DNA databases were surveyed by FASTA program with the authentic attB TG1 sequence of Streptomyces avermitilis as a query. As a result, possible attB TG1 sequences were extracted from genomes of bacterial strains belonging to Class Alphaproteobacteria in addition to those of Class Actinobacteria. Those sequences extracted with a high similarity score and high sequence identity (we took arbitrarily more than 80% identity) turned out to be located within a conserved region of dapC or related genes encoding aminotransferases and proved to be actually recognized as the cognate substrate of attP TG1 site by the in vitro TG1 integrase assay. Furthermore, the possible attB TG1 site of Rhodospirillum rubrum revealed to be used actually as a native (endogenous) attachment site for the in vivo TG1-based integration system. These features are distinct from other serine-type phage integrases and advantageous for a tool of genome technology in varied industrially important bacteria belonging to Class Alphaproteobacteria.  相似文献   

9.
To facilitate molecular genetic studies of Streptomyces ambofaciens that produces spiramycin, a commercially important macrolide antibiotic used in human medicine against Gram-positive pathogenic bacteria, the conditions for the conjugal transfer of DNA from E. coli to S. ambofaciens were established using a bacteriophage ϕC31 att/int system. The transconjugation efficiency of S. ambofaciens varied with the medium used; the highest frequency was obtained on AS-1 medium containing 10 mM MgCl2 without heat treatment of the spores. In addition, by cloning and sequencing the attB site, we identified that S. ambofaciens contains a single attB site within an ORF coding for a pirin homolog, and its attB site sequence shows 100% nt identity to the sequence of S. coelicolor and S. lividans, which have the highest efficiency in transconjugation using the ϕC31 att/int system.  相似文献   

10.
This study evaluated the ability of five serine phage integrases, from phages A118, U153, Bxb1, φFC1, and φRV1, to mediate recombination in mammalian cells. Two types of recombination were investigated, including the ability of an integrase to mediate recombination between its own phage att sites in the context of a mammalian cell and the ability of an integrase to perform genomic integration pairing a phage att site with an endogenous mammalian sequence. We demonstrated that the A118 integrase mediated precise intra-molecular recombination of a plasmid containing its attB and attP sites at a frequency of ∼ 50% in human cells. The closely related U153 integrase also performed efficient recombination in human cells on a plasmid containing the attB and attP sites of A118. The integrases from phages Bxb1, φFC1, and φRV1 carried out such recombination at their attB and attP sites at frequencies ranging from 11 to 75%. Furthermore, the A118 integrase mediated recombination between its attP site on a plasmid and pseudo attB sites in the human genome, i.e. native sequences with partial identity to attB. Fifteen such A118 pseudo att sites were analyzed, and a consensus recognition site was identified. The other integrases did not mediate integration at genomic sequences at a frequency above background. These site-specific integrases represent valuable new tools for manipulating eukaryotic genomes.  相似文献   

11.
Streptomyces sioyaensis NRRL-B5408 produces a siomycin complex (a group of thiopeptide antibiotics structurally related to thiostrepton). Development of genetic tools for the detection of siomycin production and DNA transfer into this strain is described. The existing tipA-based reporter system for determination of siomycin production was modified to achieve its stable integration into actinomycete genomes. Various replicative plasmids (pKC1139, pKC1218E, pSOK101) as well as actinophage ϕC31- and VWB-based vectors pSET152 and pSOK804, respectively, were conjugally transferred from E. coli into the siomycin producer at a frequency ranging from 3.7 × 10−9 to 1.1 × 10−5. The transconjugants did not differ from wild type in their ability to produce siomycin. There is one attB site for each integrative plasmid. The utility of temperature sensitive replicon of pKC1139 for insertional gene inactivation in S. sioyaensis has been validated by disruption of putative nonribosomal peptide synthetase gene.  相似文献   

12.
13.
Zhang L  Ou X  Zhao G  Ding X 《Journal of bacteriology》2008,190(19):6392-6397
The Streptomyces phage BT1 encodes a site-specific integrase of the large serine recombinase subfamily. In this report, the enzymatic activity of the BT1 integrase was characterized in vitro. We showed that this integrase has efficient integration activity with substrate DNAs containing attB and attP sites, independent of DNA supercoiling or cofactors. Both intra- and intermolecular recombinations proceed with rapid kinetics. The recombination is highly specific, and no reactions are observed between pairs of sites including attB and attL, attB and attR, attP and attL, or attP and attR or between two identical att sequences; however, a low but significant frequency of excision recombination between attL and attR is observed in the presence of the BT1 integrase alone. In addition, for efficient integration, the minimal sizes of attB and attP are 36 bp and 48 bp, respectively. This site-specific recombination system is efficient and simple to use; thus, it could have applications for the manipulation of DNA in vitro.  相似文献   

14.
The integrase of the temperate bacteriophage mv4 catalyzes site-specific recombination between the phage attP site and the attB site of the host during lysogenization of Lactobacillus delbrueckii subsp. bulgaricus. The mv4 integrase also functions in a wide variety of gram-positive bacteria and in Escherichia coli. In this report, in vitro and in vivo recombination assays were developed and the integrase was purified in order to study in greater detail the mv4 attP × attB recombination event. In a cell-free extract of E. coli at 42° C, the mv4 integrase promotes efficient in vitro recombination between a supercoiled attP-containing plasmid and a linear attB fragment. The integrase, which was purified to apparent homogeneity, showed no absolute requirement for accessory factors, unlike the majority of the lambda Int family of recombinases. Deletion derivatives of the attP site were constructed and tested for recombination with the attB site in vitro. A 234-bp DNA fragment containing five scattered putative mv4 Int-binding sites was sufficient for function of the attP site. In contrast to the right arm of attP, most of the left arm could be deleted without drastically reducing the recombination efficiency. In vivo in E. coli, mv4 Int catalyzed recombination in trans between attP and attB sites present on two separate plasmids. This property was used to confirm in vivo the results of the deletion analysis of the attP site performed in vitro. Received: 22 July 1998 / Accepted: 4 June 1999  相似文献   

15.
Streptomyces 23-2B is one of actinomycetes associated with marine clam Donax trunculus and has potential source of bioactive metabolites, which possesses a broad spectrum antibiotic and anticancer activities. This study aims to evaluate the effect of Streptomyces 23-2B metabolites on hepatic lipid peroxidation (LPO), reduced glutathione (GSH) levels, as well as serum uric acid, total cholesterol (TC), triglyceride (TG), nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) levels of rat. Animals were divided into four groups: the control group, which received 0.1 ml of 10% Tween-80 by intraperitoneally injection, and the other three experimental groups, which received 10% Tween 80 solution of Streptomyces 23-2B metabolites in doses of 0.5, 5 and 50 mg/kg body weight at an interval 2 days for 2 weeks. LPO levels showed significant decrease with the lowest doses. The effect at a dose of 50 mg/kg of Streptomyces 23-2B metabolites on TG was more pronounced than the other two doses (0.5 and 5 mg/kg body weight). Hypocholesterolemia was recorded in the treated rats with 0.5 and 5 mg/kg of Streptomyces 23-2B. However, the highest dose enhanced the elevation of serum TNF-α and NO levels. Thus, the present study reveals that Streptomyces 23-2B metabolite is a newly discovered biomaterial from microorganisms. The novel substance showed inhibitory activity against LPO in rat liver homogenate and improving the immune response by releasing TNF-α and NO in serum.  相似文献   

16.
Plastid marker gene excision by the phiC31 phage site-specific recombinase   总被引:5,自引:0,他引:5  
Marker genes are essential for selective amplification of rare transformed plastid genome copies to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here we report excision of plastid marker genes by the phiC31 phage site-specific integrase (Int) that mediates recombination between bacterial (attB) and phage (attP) attachment sites. We tested marker gene excision in a two-step process. First we transformed the tobacco plastid genome with the pCK2 vector in which the spectinomycin resistance (aadA) marker gene is flanked with suitably oriented attB and attP sites. The transformed plastid genomes were stable in the absence of Int. We then transformed the nucleus with a gene encoding a plastid-targeted Int that led to efficient marker gene excision. The aadA marker free Nt-pCK2-Int plants were resistant to phosphinothricin herbicides since the pCK2 plastid vector also carried a bar herbicide resistance gene that, due to the choice of its promoter, causes a yellowish-golden (aurea) phenotype. Int-mediated marker excision reported here is an alternative to the currently used CRE/loxP plastid marker excision system and expands the repertoire of the tools available for the manipulation of the plastid genome.  相似文献   

17.
The integrase encoded by the lambdoid phage HK022 (Int-HK022) resembles its coliphage λ counterpart (Int-λ) in the roles of the cognate DNA arm binding sites and in controlling the direction of the reaction. We show here that within mammalian cells, Int-HK022 does not exhibit such a control. Rather, Int-HK022 recombined between all ten possible pairwise att site combinations, including attB × attB that was more effective than the conventional integrative attP × attB reaction. We further show that Int-HK022 depends on the accessory integration host factor (IHF) protein considerably less than Int-λ and exhibits stronger binding affinity to the att core. These differences explain why wild-type Int-HK022 is active in mammalian cells whereas Int-λ is active there only as an IHF-independent mutant.  相似文献   

18.
Phage integrases are required for recombination of the phage genome with the host chromosome either to establish or exit from the lysogenic state. ϕC31 integrase is a member of the serine recombinase family of site-specific recombinases. In the absence of any accessory factors integrase is unidirectional, catalysing the integration reaction between the phage and host attachment sites, attP × attB to generate the hybrid sites, attL and attR. The basis for this directionality is due to selective synapsis of attP and attB sites. Here we show that mutations in attB can block the integration reaction at different stages. Mutations at positions distal to the crossover site inhibit recombination by destabilizing the synapse with attP without significantly affecting DNA-binding affinity. These data are consistent with the proposal that integrase adopts a specific conformation on binding to attB that permits synapsis with attP. Other attB mutants with changes close to the crossover site are able to form a stable synapse but cleavage of the substrates is prevented. These mutants indicate that there is a post-synaptic DNA recognition event that results in activation of DNA cleavage.  相似文献   

19.
The bacteriophage μ1/6 integrates its DNA into the chromosome of tetracycline producing strains of Streptomyces aureofaciens by a site-specific recombination process. A bioinformatic analysis of the μ1/6 genome revealed that orf5 encodes a putative integrase, a basic protein of 416 amino acids. The μ1/6 integrase was found to belong to the integrase family of site-specific tyrosine recombinases. The phage attachment site (attP) was localized downstream of the int gene. The attachment junctions (attL and attR) were determined, allowing identification of the bacterial attachment site (attB). All attachment sites shared a 46-bp common core sequence within which a site-specific recombination occurs. This core sequence comprises the 3′ end of a putative tRNAThr gene (anticodon TGT) which is completely restored in attL after integration of the phage into the host genome. An integration vector containing μ1/6 int-attP region was inserted stably into the S. aureofaciens B96, S. lividans TK24, and S. coelicolor A3. The μ1/6 integrase was shown to be functional in vivo in heterologous Escherichia coli without any other factors encoded by Streptomyces. In vitro recombination assay using purified μ1/6 integrase demonstrated its ability to catalyze integrative recombination in the presence of a crude extract of E. coli cells.  相似文献   

20.
Tseng M  Hoang KC  Yang MK  Yang SF  Chu WS 《Biodegradation》2007,18(5):579-583
Thermophilic actinomycetes strains were isolated from various environment in Taiwan and screened for degradation of poly(ethylene succinate) (PES), poly(ε-caprolactone) (PCL) and/or poly(β-hydroxybutyrate) (PHB) by the clear-zone method. Out of 341 strains of thermophilic actinomycetes, 105 isolates were PHB-degraders (30.8%), 198 isolates were PCL-decomposers (58.1%), and 99 isolates could degrade PES (29.0%). Furthermore, 77 isolates could degrade both PHB and PCL (22.6%), 35 isolates could degrade both PHB and PES (10.3%), 81 isolates could degrade both PES and PCL (23.8%) and 31 isolates could degrade the three polyesters used in this study (9.1%). Base on the morphological and chemical characteristics, these 31 isolates belonging to Actinomadura (12.9%), Microbispora (25.8%), Streptomyces (48.4%), Thermoactinomyces (9.7%) and Saccharomonospora genus (3.22%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号