首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MENZEL  C. M. 《Annals of botany》1983,52(1):65-69
Tuber formation in intact potato plants (Solanum tuberosum L.cv. Sebago) was reduced by high shoot or root temperatures andstrongly inhibited when both were high. When both the shootand root temperatures were high, disbudding strongly promotedtuberization. There was a smaller increase with warm roots andcool shoots, but no response with warm shoots and cool roots.When both the shoots and roots were cool, disbudding reducedtuberization. Exogenous GA3, effectively substituted for thebuds at high temperatures, completely preventing tuberization.In apical cuttings, removal of the terminal bud, but not theroots, reduced the inhibitory effects of high temperatures ontuberization. The experiment indicates that tuber productionmay be controlled by at least three factors: a promoter, whichis not assimilate, produced by the buds at cool temperatures;an inhibitor, derived from the buds, but dependent on warm roottemperatures for its formation; and a second inhibitor derivedfrom the mature leaves and produced in response to warm shoottemperatures. Solanum tuberosumL, potato, tuberization, temperature, disbudding, gibberellic acid  相似文献   

2.
MENZEL  C. M. 《Annals of botany》1980,46(3):259-265
The responses of potato plants (Solanum tuberosum L., cv. Sebago)to high temperatures (32 day/28 C night or 32/18 °C) andgibberellin are similar, in that they promote haulm growth andsuppress tuber production, whereas low temperatures (22/18 °C)abscisic acid and CCC have the opposite effect, promoting tuberproduction and reducing the growth of the haulms. The inhibitoryeffect of the high temperatures on tuber production, under aphotoperiod of 14 h, was almost completely reversed in theseexperiments by the application of CCC, and partly reversed byABA. Single-leaf cuttings from plants grown at the various temperaturesand chemical treatments responded in the same way as the wholeplant. It is suggested that both haulm growth and tuber initiationare influenced by a common hormonal control, and that temperatureexerts its influence by altering the balance between the levelsof endogenous gibberellins and inhibitors. These substancesapparently act directly on the stolon tip, rather than throughtheir general influence on haulm growth. Solanum tuberosum L., potato, tuberization, temperature response, gibberellin, abscisic acid, 2-chloroethyltrimethylammonium chloride (CCC)  相似文献   

3.
Ewing EE 《Plant physiology》1978,62(3):348-353
The intensity of “tuberization stimulus” in potato shoots (Solanum tuberosum L.) can be assessed from cuttings containing one or more leaves. Cuttings maintained in a mist chamber under long days will form tubers from underground buds if prior to taking the cutting the leaves received sufficient exposure to photoperiods less than the critical photoperiod. The greatest tendency to tuberize was found in cuttings that consisted of a single, fully expanded leaf and its subtended bud. Grafts showed that genetical differences in critical photoperiod resided in properties of the leaf. Short days before cutting tended to shift growth from above ground buds of two-node cuttings to below ground buds, even if the number of short days was insufficient for tuber induction. As few as 6 short days reduced growth of shoots at the upper bud and increased underground growth of shoots and stolons.  相似文献   

4.
One-node potato (Solanum tuberosum L. cv. ‘Katahdin’)cuttings were used to study early anatomical changes associatedwith tuberization. Starch deposition and the percentage frequencyof cells in mitosis increased in the medullary region of thebud within 1 d after cutting, whereas increases in average cellsize were not detected until 4 d after cutting. Starch depositionand mitosis were the earliest detectable changes in anatomyassociated with tuber initiation. Potato, Solanum tuberosum L., tuber initiation, cuttings, cell enlargement, mitosis, starch deposition  相似文献   

5.
MENZEL  C. M. 《Annals of botany》1983,52(5):697-702
Warm temperatures (35°C day/30°C night) which inhibittuberization in potato (Solanum tuberosum L., cv. Sebago) increasedgibberellin activity in crude extracts from buds, but not frommature leaves, as determined by the lettuce hypocotyl bioassay.Changes in the growth of tubers and stolons indicate the occurrenceof basipetal movement of GA3 applied to the terminal bud ora mature leaf. 14C labelling from GA3 or mevalonic acid injectedjust below the terminal bud was recovered in the lower shoot,stolons and tubers, but the amount transported was greater atcool temperatures (20/15°C). It is concluded that high temperaturespromote the synthesis of gibberellin in the buds rather thantransport to the stolons. Solanum tuberosum L., potato, tuberization, gibberellin  相似文献   

6.
Potato (Solanum tuberosum L.) plants were grown under long days(LD) of 18 h before a subset of the plants was transferred to10-h photosynthetic periods with either a dark night (SD) oran 8-h dim photoperiod extension with incandescent lamps (DE).Temperature was constant at 21 °C. Leaves were sampled atthe beginning and end of the high density light period for starchanalyses. Potato leaves accumulated starch more rapidly underSD than under LD; and this difference continued after a secondmajor sink, the tuber, began to develop. Starch accumulationover 10 h in SD leaves was three times higher than in LD leaves,even after 17 d of treatment. By this time SD gave higher wholeplant relative growth rates than LD, and the tuber mass of SDplants exceeded 30% of their total plant biomass. The DE treatmentresulted in starch accumulation intermediate to the LD and SDtreatments. Genotypes likewise differed: the earlier genotype,more strongly induced to tuberize, had higher leaf starch accumulationthan the later genotype. The effects of photoperiod and genotypewere also present when potatoes were grown at 27 °C, a temperatureunfavourable for tuberization under LD. Thus the formation ofa strong tuber sink was consistently associated with more rapidleaf starch accumulation. Potato, Solanum tuberosum L., cv. Norchip, photoperiod, temperature, genotype, starch accumulation, partitionin  相似文献   

7.
Second growth is an important physiological disorder of thepotato (Solanum tuberosum L.) plant. A model system to studysecond growth was developed using one-leaf cuttings. Photoperiod,temperature, decapitation and leaf removal treatments were carriedout on the plants from which the cuttings were taken and onthe cuttings themselves. Tuberized, one-leaf cuttings takenfrom moderately-induced plants and exposed to 35 °C afterleaf removal showed 95% second growth within 10 d after treatmentinitiation. Conditions that promoted second growth also reducedstarch and dry-matter content, even in tubers that did not developsecond growth. Cuttings, second growth, potato, Solanum tuberosum L, cv, Bintje, Solanum tuberosum L. cv., Désirée, Solanum tuberosum L. cv., Russet Burbank, tuberization, starch content, dry-matter, heat, photoperiod, decapitation, leaf removal  相似文献   

8.
KAHN  B. A.; EWING  E. E. 《Annals of botany》1983,52(6):861-871
Potato plants (Solanum tuberosum L. cvs Chippewa and Katahdin)were grown in a glasshouse under continuous light. Various numbersof long (16 h) nights were given to these plants and stem cuttingswere taken. Treatments were applied to the cuttings, which werethen placed in a mist bench under continuous light and examinedfor tuberization after 12 days. The general tendency for the strongest tuberization to occurat the most basipetal nodes, which is commonly seen with intactpotato plants, was also found on stem cuttings. This patterncould not be attributed primarily to orientation with respectto gravity, proximity to the mother tuber, or age of buriedbuds. Buried buds farthest from active leaves tended to tuberizethe most strongly. However, distance of the buried bud fromstem exposed to light may have been of equal or greater importance. potato, Solanum tuberosum L., stem cuttings, tuberization  相似文献   

9.
MENZEL  C.M. 《Annals of botany》1985,55(1):35-39
Potato plants (Solanum tuberosum L., cv. Sebago) responded similarlyto high temperatures and low irradiance by diverting dry matterto the shoots rather than the tubers, and changes were notedin a range of morphological characteristics. It is proposedthat the effect of both high temperature and low irradianceis brought about by the increased production of a growth substance,possibly gibberellin, which inhibits tuber formation, and thattuber yield is determined by the balance between temperatureand irradiance. Solanum tuberosum L., potato, tuberization, temperature, irradiance, gibberellin  相似文献   

10.
Factors controlling growth and tuberization of axillary budsin shoots of plantlets of potato (Solarium tuberosum L.) culturedin vitro were investigated. Correlative inhibition restrainedgrowth and tuberization of the axillary buds. Exposure of intactplantlets for various periods (4 to 48 h) to low (2 or 12C)or high (30 C) temperatures as comparedto 18C, did not alleviatecorrelative inhibition. Removal of the apical part of the shoot,the roots or both was generally ineffective Elevating sucroseconcentration from 30 to 80 g dm–3 promoted tuberizationon axillary buds, and the cytokinin 6-(-dimethylallylamino)purine (2iP), alleviated correlative inhibition and enhancedtuberization in intact plantlets. In the whole plantlet mostof the tubers were formed on the basal nodes, however, oncecorrelative inhibition was eliminated by the dissection of theshoot to single node sections, tubers were formed on every axillarybud. The single most effective factor inducing tuberizationin single node sections was the growth retardant ancymidol,an inhibitor of giberellin biosynthesis. Key words: Potato, Solanum tuberosum L., in vitro tuberization, correlative inhibition  相似文献   

11.
Rye (Secale cereale cv. Rheidol) and wheat (Triticum aestivumcv. Mardler) were grown at shoot/root temperatures of 20/20°C (warm grown, WG plants), 8/8 °C (cold grown, CG plants)and 20/8 °C (differential grown, DG plants). Plants fromcontrasting growth temperature regimes were standardized andcompared using a developmental timescale based on accumulatedthermal time (°C d) at the shoot meristem. Accumulationof dry matter, nitrogen and potassium were exponential overthe time period studied (150–550 °C d). In rye, therates of plant dry matter and f. wt accumulation were linearlyrelated to the temperature of the shoot meristem. However, inwheat, although the rates of plant dry matter and f. wt accumulationwere temperature dependent, the linear relationship with shootmeristem temperature was weaker than in rye. The shoot/rootratio of rye was stable irrespective of growth temperature treatment,but the shoot/root ratio of wheat varied with growth temperaturetreatment. The shoot/root ratio of DG wheat was 50% greaterthan WG wheat. In both cereals, nutrient concentrations anddry matter content tended to be greater in organs exposed directlyto low temperatures. The mean specific absorption rates of nutrientswere calculated for the whole period studied for each species/temperaturecombination and were positively correlated with both plant shoot/rootratio and relative growth rate. The data suggest that nutrientuptake rates were influenced primarily by plant demand, withno indication of specific nutrient limitations at low temperatures. Nutrient accumulation, relative growth rate (RGR), rye, Secale cereale cv. Rheidol, temperature, thermal time, Triticum aestivum cv. Mardler, wheat  相似文献   

12.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. in flowing solution culture. I. Growth.—J.exp. Bot. 38: 42–52 Oilseed rape (Brassica napus L. cv. Bien venu) was grown for49 d in flowing nutrient solution at pH 6?0 with root temperaturedecrementally reduced from 20?C to 5?C; and then exposed todifferent root temperatures (3, 5, 7, 9, 11, 13,17 or 25?C)held constant for 14 d. The air temperature was 20/15?C day/nightand nitrogen was supplied automatically to maintain 10 mmolm–3 NH4NO3 in solution. Total dry matter production wasexponential with time and similar at all root temperatures givinga specific growth rate of 0?0784 g g–1 d–1. Partitioningof dry matter was influenced by root temperature; shoot: rootratios increased during treatment at 17?C and 25?C but decreasedafter 5 d at 3?C and 5?C. The ratio of shoot specific growthrate: root specific growth rate increased with the ratio ofwater soluble carbohydrates (shoot: root). Concentrations ofwater soluble carbohydrates in shoot and root were inverselyrelated to root temperature; at 3, 5 and 7?C they increasedin stem + petioles throughout treatment, coinciding with a decreasein the weight of tissue water per unit dry matter. These resultssuggest that the accumulation of soluble carbohydrates at lowtemperature is the result of metabolic imbalance and of osmoticadjustment to water stress. Key words: Brassica napus, oilseed rape, root temperature, specific growth rate  相似文献   

13.
DAVIES  H. V.; VIOLA  R. 《Annals of botany》1988,61(6):689-693
The treatment of potato tubers with 150 µmol dm–3gibberellic acid (GA3) stimulated starch breakdown and hexoseaccumulation in tuber tissues and the transfer of dry matterto stems. These effects could not be accounted for by enhancedactivities of starch phosphorylase, amylase and acid invertase.Indeed enzyme activities either declined or remained relativelyconstant as starch degradation and hexose accumulation proceeded.Changes in the rate of starch depletion were related to changesin sink strength and sink type, the onset of tuber initiationin controls causing the rate of starch degradation to exceedthat in GA3-treated tissues, in which tuberization was inhibited. Solanum tuberosum L., gibberellic acid, starch breakdown  相似文献   

14.
Cold hardiness in actively growing plants of Saxifraga caespitosaL., an arctic and subarctic cushion plant, was examined. Plantscollected from subarctic and arctic sites were cultivated ina phytotron at temperatures of 3, 9, 12 and 21 °C undera 24-h photoperiod, and examined for freezing tolerance usingcontrolled freezing at a cooling rate of 3–4 °C eitherin air or in moist sand. Post-freezing injury was assessed byvisual inspection and with chlorophyll fluorescence, which appearedto be well suited for the evaluation of injury in Saxifragaleaves. Freezing of excised leaves in moist sand distinguishedwell among the various treatments, but the differences werepartly masked by significant supercooling when the tissue wasfrozen in air. Excised leaves, meristems, stem tissue and flowerssupercooled to –9 to –15 °C, but in rosettesand in intact plants ice nucleation was initiated at –4to –7 °C. The arctic plants tended to be more coldhardy than the subarctic plants, but in plants from both locationscold hardiness increased significantly with decreasing growthtemperature. Plants grown at 12 °C or less developed resistanceto freezing, and excised leaves of arctic Saxifraga grown at3 °C survived temperatures down to about –20 °C.Exposure to –3 °C temperature for up to 5 d did notsignificantly enhance the hardiness obtained at 3 °C. Whenwhole plants of arctic Saxifraga were frozen, with roots protectedfrom freezing, they survived –15 °C and –25°C when cultivated at 12 and 3 °C, respectively, althougha high percentage of the leaves were killed. The basal levelof freezing tolerance maintained in these plants throughoutperiods of active growth may have adaptive significance in subarcticand arctic environments. Saxifraga caespitosa L., arctic, chlorophyll fluorescence, cold acclimation, cushion plant, freezing stress, freezing tolerance, ice nucleation, supercooling  相似文献   

15.
The temperature of the roots and shoots of Zea mays plants werevaried independently of each other and the rates of leaf extensionand leaf water potentials were measured. Restrictions of leafextension occurred when root temperatures were lowered from35 to 0 °C, but leaf water potentials were lowered onlyat root temperatures below 5 °C. Similar changes in ratesof leaf extension were measured at air temperatures from 30to 5 °. Between 30 and 35 °C air temperature, in anunsaturated atmosphere, restrictions of leaf extension wereassociated with low leaf water potentials. It was concluded that, at root temperatures 5 to 35 °C,and shoot temperatures 5 to 30 °C, water stress was notthe main factor restricting the extension of Zea mays leaves.  相似文献   

16.
1. Aerial tuber formation of Begonia evansiana Andr. known totake place usually in response to short-day conditions occurredalso under long-day conditions, provided a part of the photoperiodswas maintained at a lower temperature (chillng). Such a changeof the critical daylength was marked in degree when the chillingtemperature was from 9° to 13°. The effectiveness ofthe chilling was more pronounced when it was given during thelater part of photoperiods, namely, just before nyctoperiods,than when given during the early part. No promotion of the chillingeffect by sugar application was found. 2. If the plant was previously subjected to chilling under illumination,aerial tuber formation occurred in continuous darkness. Themagnitude of this dark tuberization increased with decreasingthe temperature and with prolonging the duration of the chilling. 3. If the plant was previously exposed to chilling, aerial tuberformation occurred in response to a single photoperiodic cycle,whose critical dark length was shorter than that in the standardcondition. The magnitude of the tuberization was increased withthe prolongation of the chilling period. The effectiveness ofthis previous chilling survived over one day even under illuminationand a temperature of 30°. In a plant unexposed to the chilling,tuber formation required at least two cycles of short-days. 4. The aged plant which is known to tuberize in darkness wasunable to respond to a single short-day. 5. Upon a modification of Gregory's scheme of the process ofshort-day response, the above findings were inclusively explained. (Received August 2, 1963; )  相似文献   

17.
The effect of varying independently nutrient solution temperature(5, 15, 25 C) and air temperature (10, 20, 30 C) on hydroponicallygrown Ceanothus greggii (Rhamnaceae) seedlings was studied.Increasing both air and solution temperatures caused higherroot and shoot biomass and larger root and leaf areas. Root/shootbiomass ratio increased with increasing solution temperatureand decreased with increasing air temperature. The surface areaof individual leaves decreased with higher air temperaturesbut did not change with solution temperatures. These resultsare opposite to what is predicted from Davidson's balanced rootand shoot activity model. We suggest that nutrient solutiontemperature directly affected root growth and that air temperaturedirectly affected shoot growth. Ceanothus greggii (Trel.) Jeps., root temperatures, soot temperature, plant growth, biomass allocation  相似文献   

18.
Compared with late cultivars, early potato cultivars allocatea larger part of the available assimilates to the tubers earlyin the growing season, leading to shorter growing periods andlower yields. A dynamic simulation model, integrating effectivetemperature and source –sink relationships of the crop,was used to analyse this relation, using data from experimentsin the Netherlands carried out over 5 years. Dry matter allocationto the tuber in these field experiments was simulated well whenthe tuber was considered as a dominant sink that affects earlinessof a potato crop in two ways: early allocation of assimilatesto the tubers stops foliage growth early in the season and reducesthe longevity of individual leaves. In a sensitivity analysisthe influence of tuber initiation, leaf longevity and the maximumrelative tuber growth rate (Rtb) on assimilate allocation andcrop earliness was evaluated. It was found that the maximumrelative tuber growth rate can influence crop earliness morethan the other two factors, but when conditions for tuber growthare optimal, the leaf longevity is most important. Solanum tuberosumL.; simulation model; source –sink relationships; cultivars  相似文献   

19.
Accumulation of dry weight and leaf plus stem area were measuredin Echinochloa utilis and E. frumentacea grown at temperatureregimes from 15/10°C to 33/28°C (day/night). Tilleringand height were recorded in addition to leaf number which wassubsequently used as a developmental index. In both species shoot dry weight increased with temperatureup to 33/28°C; the increase in relative growth rate (RGR)was negligible above 27/22°C. Below 27/22°C the RGRof E. frumentacea decreased sharply and at 15/10°C it madeno effective growth. At low temperatures the RGR of E. frumentaceawas lower than that of E. utilis due to slow leaf area expansion,and in particular smaller individual leaves. E. frumentaceatillered more than E. utilis. Plant development was retardedat low temperatures but was not as responsive to temperatureas dry weight and leaf area. The different responses to temperatureof the two species were described in equations suitable forinclusion in predictive growth models. Echinochloa spp., millet, growth, development, temperature, relative growth rate  相似文献   

20.
Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18°C and fluctuating 22°C/14°C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18°C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号