首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The great increase in the number of phylogenetic studies of a wide variety of organisms in recent decades has focused considerable attention on the balance of phylogenetic trees—the degree to which sister clades within a tree tend to be of equal size—for at least two reasons: (1) the degree of balance of a tree may affect the accuracy of estimates of it; (2) the degree of balance, or imbalance, of a tree may reveal something about the macroevolutionary processes that produced it. In particular, variation among lineages in rates of speciation or extinction is expected to produce trees that are less balanced than those that result from phylogenetic evolution in which each extant species of a group has the same probability of speciation or extinction. Several coefficients for measuring the balance or imbalance of phylogenetic trees have been proposed. I focused on Colless's coefficient of imbalance (7) for its mathematical tractability and ease of interpretation. Earlier work on this statistic produced exact methods only for calculating the expected value. In those studies, the variance and confidence limits, which are necessary for testing the departure of observed values of I from the expected, were estimated by Monte Carlo simulation. I developed recursion equations that allow exact calculation of the mean, variance, skewness, and complete probability distribution of I for two different probability-generating models for bifurcating tree shapes. The Equal-Rates Markov (ERM) model assumes that trees grow by the random speciation and extinction of extant species, with all species that are extant at a given time having the same probability of speciation or extinction. The Equal Probability (EP) model assumes that all possible labeled trees for a given number of terminal taxa have the same probability of occurring. Examples illustrate how these theoretically derived probabilities and parameters may be used to test whether the evolution of a monophyletic group or set of monophyletic groups has proceeded according to a Markov model with equal rates of speciation and extinction among species, that is, whether there has been significant variation among lineages in expected rates of speciation or extinction.  相似文献   

3.
The origin and diversification of RNA secondary structure were traced using cladistic methods. Structural components were coded as polarized and ordered multi-state characters, following a model of character state transformation outlined by considerations in statistical mechanics. Several classes of functional RNA were analyzed, including ribosomal RNA (rRNA). Considerable phylogenetic signal was present in their secondary structure. The intrinsically rooted phylogenies reconstructed from evolved RNA structure depicted those derived from nucleic acid sequence at all taxonomical levels, and grouped organisms in concordance with traditional classification, especially in the archaeal and eukaryal domains. Natural selection appears therefore to operate early in the information flow that originates in sequence and ends in an adapted phenotype. When examining the hierarchical classification of the living world, phylogenetic analysis of secondary structure of the small and large rRNA subunits reconstructed a universal tree of life that branched in three monophyletic groups corresponding to Eucarya, Archaea, and Bacteria, and was rooted in the eukaryotic branch. Ribosomal characters involved in the translational cycle could be easily traced and showed that transfer RNA (tRNA) binding domains in the large rRNA subunit evolved concurrently with the rest of the rRNA molecule. Results suggest it is equally parsimonious to consider that ancestral unicellular eukaryotes or prokaryotes gave rise to all extant life forms and provide a rare insight into the early evolution of nucleic acid and protein biosynthesis. Received: 13 September 2000 / Accepted: 27 August 2001  相似文献   

4.
5.
Aim Various methods are employed to recover patterns of area relationships in extinct and extant clades. The fidelity of these patterns can be adversely affected by sampling error in the form of missing data. Here we use simulation studies to evaluate the sensitivity of an analytical biogeographical method, namely tree reconciliation analysis (TRA), to this form of sampling failure. Location Simulation study. Methods To approximate varying degrees of taxonomic sampling failure within phylogenies varying in size and in redundancy of biogeographical signal, we applied sequential pruning protocols to artificial taxon–area cladograms displaying congruent patterns of area relationships. Initial trials assumed equal probability of sampling failure among all areas. Additional trials assigned weighted probabilities to each of the areas in order to explore the effects of uneven geographical sampling. Pruned taxon–area cladograms were then analysed with TRA to determine if the optimal area cladograms recovered match the original biogeographical signal, or if they represent false, ambiguous or uninformative signals. Results The results indicate a period of consistently accurate recovery of the true biogeographical signal, followed by a nonlinear decrease in signal recovery as more taxa are pruned. At high levels of sampling failure, false biogeographical signals are more likely to be recovered than the true signal. However, randomization testing for statistical significance greatly decreases the chance of accepting false signals. The primary inflection of the signal recovery curve, and its steepness and slope depend upon taxon–area cladogram size and area redundancy, as well as on the evenness of sampling. Uneven sampling across geographical areas is found to have serious deleterious effects on TRA, with the accuracy of recovery of biogeographical signal varying by an order of magnitude or more across different sampling regimes. Main conclusions These simulations reiterate the importance of taxon sampling in biogeographical analysis, and attest to the importance of considering geographical, as well as overall, sampling failure when interpreting the robustness of biogeographical signals. In addition to randomization testing for significance, we suggest the use of randomized sequential taxon deletions and the construction of signal decay curves as a means to assess the robustness of biogeographical signals for empirical data sets.  相似文献   

6.
Legendre, L, Le Roy, N, Martinez‐Maza, C, Montes, L, Laurin, M & Cubo, J. (2012). Phylogenetic signal in bone histology of amniotes revisited. —Zoologica Scripta, 42, 44–53. There is currently a debate about the presence of a phylogenetic signal in bone histological data, but very few rigorous tests have fuelled the discussions on this topic. Here, we performed new analyses using a larger set of seven histological traits and including 25 taxa (nine extinct and 16 extant taxa), using three methods: the phylogenetic eigenvector regression, the tree length distribution and the regressions on distance matrices. Our results clearly show that the phylogenetic signal in our sample of bone histological characters is strong, even after correcting for multiple testing. Most characters exhibit a significant phylogenetic signal according to at least one of our three tests, with the phylogeny often explaining 20–60% of the variation in the histological characters. Thus, we conclude that the phylogenetic comparative method should be systematically used in interspecific analyses of bone histodiversity to avoid problems of non‐independence among observations.  相似文献   

7.
rRNA二级结构序列用于真菌系统学研究的方法初探   总被引:1,自引:0,他引:1  
本文首次利用核酸二级结构特征代替核酸碱基作为探讨类群之间亲缘关系的信号,构建了基于结构特征的子囊菌部分类群的系统进化树。该方法以S(规范的碱基对),Q(不规范的碱基对),I(单链),B(侧环),M(多分枝环)和H(发卡结构)为代码将二级结构特征区分为6种不同的亚结构类型,然后将二级结构特征转换为结构序列,并进行结构序列分析。该方法使rRNA不只局限于碱基比较,拓展了其应用范围,为揭示分子的功能与进化的关系提供了线索。结果表明,结构序列分析可用于子囊菌的系统学研究;相对于核酸序列分析,结构分析的结果似乎更加清晰地体现子囊果的演化过程。  相似文献   

8.
When protein sequences divergently evolve under functional constraints, some individual amino acid replacements that reverse the charge (e.g. Lys to Asp) may be compensated by a replacement at a second position that reverses the charge in the opposite direction (e.g. Glu to Arg). When these side-chains are near in space (proximal), such double replacements might be driven by natural selection, if either is selectively disadvantageous, but both together restore fully the ability of the protein to contribute to fitness (are together "neutral"). Accordingly, many have sought to identify pairs of positions in a protein sequence that suffer compensatory replacements, often as a way to identify positions near in space in the folded structure. A "charge compensatory signal" might manifest itself in two ways. First, proximal charge compensatory replacements may occur more frequently than predicted from the product of the probabilities of individual positions suffering charge reversing replacements independently. Conversely, charge compensatory pairs of changes may be observed to occur more frequently in proximal pairs of sites than in the average pair. Normally, charge compensatory covariation is detected by comparing the sequences of extant proteins at the "leaves" of phylogenetic trees. We show here that the charge compensatory signal is more evident when it is sought by examining individual branches in the tree between reconstructed ancestral sequences at nodes in the tree. Here, we find that the signal is especially strong when the positions pairs are in a single secondary structural unit (e.g. alpha helix or beta strand) that brings the side-chains suffering charge compensatory covariation near in space, and may be useful in secondary structure prediction. Also, "node-node" and "node-leaf" compensatory covariation may be useful to identify the better of two equally parsimonious trees, in a way that is independent of the mathematical formalism used to construct the tree itself. Further, compensatory covariation may provide a signal that indicates whether an episode of sequence evolution contains more or less divergence in functional behavior. Compensatory covariation analysis on reconstructed evolutionary trees may become a valuable tool to analyze genome sequences, and use these analyses to extract biomedically useful information from proteome databases.  相似文献   

9.
Sexual selection has often been invoked in explaining extravagant morphological and behavioural adaptations that function to increase mating success. Much is known about the effects of intersexual selection, which operates through female mate choice, in shaping animal signals. The role of intrasexual selection has been less clear. We report on the first evidence for the coevolution of signal complexity and sexual size dimorphism (SSD), which is characteristically produced by high levels of male male competition. We used two complementary comparative methods in order to reveal that the use of complex signals is associated with SSD in extant species and that historical increases in complexity have occurred in regions of a phylogenetic tree characterized by high levels of pre-existing size dimorphism. We suggest that signal complexity has evolved in order to improve opponent assessment under conditions of high male male competition. Our findings suggest that intrasexual selection may play an important and previously underestimated role in the evolution of communicative systems.  相似文献   

10.
The first three branches of the angiosperm phylogenetic tree consist of eight families with ~201 species of plants (the ANITA grade). The oldest flower fossil for the group is dated to the Early Cretaceous (115-125 Mya) and identified to the Nymphaeales. The flowers of extant plants in the ANITA grade are small, and pollen is the edible reward (rarely nectar or starch bodies). Unlike many gymnosperms that secrete "pollination drops," ANITA-grade members examined thus far have a dry-type stigma. Copious secretions of stigmatic fluid are restricted to the Nymphaeales, but this is not nectar. Floral odors, floral thermogenesis (a resource), and colored tepals attract insects in deceit-based pollination syndromes throughout the first three branches of the phylogenetic tree. Self-incompatibility and an extragynoecial compitum occur in some species in the Austrobaileyales. Flies are primary pollinators in six families (10 genera). Beetles are pollinators in five families varying in importance as primary (exclusive) to secondary vectors of pollen. Bees are major pollinators only in the Nymphaeaceae. It is hypothesized that large flowers in Nymphaeaceae are the result of the interaction of heat, floral odors, and colored tepals to trap insects to increase fitness.  相似文献   

11.
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree—a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes—called the “species tree.” One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the “concordance” with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping—but not identical—sets of labels, is called “supertree.” In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of “containing as a minor” and “containing as a topological minor” in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time \(2^{O(k^2)} \cdot n\), where n is the total size of the input.  相似文献   

12.
刘超洋  庄文颖 《菌物学报》2011,30(6):912-919
探讨了核糖体小亚基二级结构对真菌系统发育分析的影响。对用不同方法构建的系统发育树进行比较,结果表明结合二级结构信息的分析方法较传统方法产生了更为合理的拓扑结构。二级结构信息除用于优化序列比对外,还需整合到核酸替代模型中;恰当的序列比对方法、进化模型和建树运算法则有助于更加准确地揭示类群之间的亲缘关系。  相似文献   

13.
Hay JM  Sarre SD  Daugherty CH 《Heredity》2004,93(5):468-475
'Living fossil' taxa, by definition, have no close relatives, and therefore no outgroup to provide a root to phylogenetic trees. We identify and use a molecular outgroup in the sole extant lineage of sphenodontid reptiles, which separated from other reptiles 230 million years ago. We isolated and sequenced a partial nuclear copy of the mitochondrial cytochrome b gene. We confirm the copy is indeed not mitochondrial, is older than all extant mitochondrial copies in Sphenodon (tuatara), and is therefore useful as a molecular outgroup. Under phylogenetic analysis, the nuclear copy places the root of the tuatara mitochondrial gene tree between the northern and the southern (Cook Strait) groups of islands of New Zealand that are the last refugia for Sphenodon. This analysis supports a previous mid-point rooted mitochondrial gene tree. The mitochondrial DNA tree conflicts with allozyme analyses which place a Cook Strait population equidistant to all northern and other Cook Strait populations. This population on North Brother Island is the only natural population of extant S. guntheri; thus, we suggest that the current species designations of tuatara require further investigation.  相似文献   

14.
15.
The GenBank database contains essentially all of the nucleotide sequence data generated for published molecular systematic studies, but for the majority of taxa these data remain sparse. GenBank has value for phylogenetic methods that leverage data–mining and rapidly improving computational methods, but the limits imposed by the sparse structure of the data are not well understood. Here we present a tree representing 13,093 land plant genera—an estimated 80% of extant plant diversity—to illustrate the potential of public sequence data for broad phylogenetic inference in plants, and we explore the limits to inference imposed by the structure of these data using theoretical foundations from phylogenetic data decisiveness. We find that despite very high levels of missing data (over 96%), the present data retain the potential to inform over 86.3% of all possible phylogenetic relationships. Most of these relationships, however, are informed by small amounts of data—approximately half are informed by fewer than four loci, and more than 99% are informed by fewer than fifteen. We also apply an information theoretic measure of branch support to assess the strength of phylogenetic signal in the data, revealing many poorly supported branches concentrated near the tips of the tree, where data are sparse and the limiting effects of this sparseness are stronger. We argue that limits to phylogenetic inference and signal imposed by low data coverage may pose significant challenges for comprehensive phylogenetic inference at the species level. Computational requirements provide additional limits for large reconstructions, but these may be overcome by methodological advances, whereas insufficient data coverage can only be remedied by additional sampling effort. We conclude that public databases have exceptional value for modern systematics and evolutionary biology, and that a continued emphasis on expanding taxonomic and genomic coverage will play a critical role in developing these resources to their full potential.  相似文献   

16.
Neutral macroevolutionary models, such as the Yule model, give rise to a probability distribution on the set of discrete rooted binary trees over a given leaf set. Such models can provide a signal as to the approximate location of the root when only the unrooted phylogenetic tree is known, and this signal becomes relatively more significant as the number of leaves grows. In this short note, we show that among models that treat all taxa equally, and are sampling consistent (i.e. the distribution on trees is not affected by taxa yet to be included), all such models, except one (the so-called PDA model), convey some information as to the location of the ancestral root in an unrooted tree.  相似文献   

17.
The degree to which the ontogeny of organisms could facilitate our understanding of phylogenetic relationships has long been a subject of contention in evolutionary biology. The famed notion that ‘ontogeny recapitulates phylogeny’ has been largely discredited, but there remains an expectation that closely related organisms undergo similar morphological transformations throughout ontogeny. To test this assumption, we used three‐dimensional geometric morphometric methods to characterize the cranial morphology of 10 extant crocodylian species and construct allometric trajectories that model the post‐natal ontogenetic shape changes. Using time‐calibrated molecular and morphological trees, we employed a suite of comparative phylogenetic methods to assess the extent of phylogenetic signal in these trajectories. All analyses largely demonstrated a lack of significant phylogenetic signal, indicating that ontogenetic shape changes contain little phylogenetic information. Notably, some Mantel tests yielded marginally significant results when analysed with the morphological tree, which suggest that the underlying signal in these trajectories is correlated with similarities in the adult cranial morphology. However, despite these instances, all other analyses, including more powerful tests for phylogenetic signal, recovered statistical and visual evidence against the assumption that similarities in ontogenetic shape changes are commensurate with phylogenetic relatedness and thus bring into question the efficacy of using allometric trajectories for phylogenetic inference.  相似文献   

18.
19.
Plant litter decomposition is one of the most important processes in terrestrial ecosystems, as it is a key factor in nutrient cycling. Decomposition rates depend on environmental factors, but also plant traits, as these determine the character of detritus. We measured litter decomposition rate for 57 common tree species displaying a variety of functional traits within four sites in primary and four sites in secondary tropical forest in Madang Province, Papua New Guinea. The phylogenetic relationships between these trees were also estimated using molecular data. The leaves collected from different tree species were dried for two days, placed into detritus bags and exposed to ambient conditions for two months. Nitrogen, carbon and ash content were assessed as quantitative traits and used together with a phylogenetic variance– covariance matrix as predictors of decomposition rate. The analysis of the tree species composition from 96 quadrats located along a successional gradient of swidden agriculture enabled us to determine successional preferences for individual species. Nitrogen content was the only functional trait measured to be significantly positively correlated with decomposition rate. Controlling for plant phylogeny did not influence our conclusions, but including phylogeny demonstrated that the mainly early successional family Euphorbiaceae is characterized by a particularly high decomposition rate. The acquisitive traits (high nitrogen content and low wood density) correlated with rapid decomposition were characteristic for early successional species. Decomposition rate thus decreased from early successional to primary forest species. However, the decomposition of leaves from the same species was significantly faster in primary than in secondary forest stands, very probably because the high humidity of primary forest environments keeps the decomposing material wetter.  相似文献   

20.
Phylogenetic relationships within the Erythrobasidium clade as a lineage of the urediniomycetous yeasts were examined using partial regions of 18S rDNA, 5.8S rDNA, 26S rDNA, internal transcribed spacers (ITSs), and elongation factor (EF)-1alpha. Combined data analysis of all segments successfully yielded a reliable phylogeny and confirmed the cohesion of species characterized by Q-10(H2) as a major ubiquinone. Differences in secondary structure predicted for a variable region in 26S rDNA corresponded to major divergences in the phylogenetic tree based on the primary sequence. The common presence of a shortened helix in this region was considered to be evidence of monophyly for species with Q-10(H2), Sakaguchia dacryoides, Rhodotorula lactosa, and Rhodotorula lamellibrachiae, although it was not as strongly supported by the combined data tree. The information on intron positions in the EF-1alpha gene had potential usefulness in the phylogenetic inference between closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号