首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estrogen receptor (ER) from chicken liver and calf uterus were used to study the capacity and the characteristics of the receptor binding sites (acceptor sites) in chicken target cell nuclei. Binding studies were performed at a physiological salt concentration of 0.15 M KCl. Binding of liver ER to liver nuclei was temperature-dependent, showing a 9-fold increase between 0 and 28 degrees C. The maximal number of acceptor sites measured in this cell-free system (280 sites/nucleus) was considerably lower than measured in nuclei after in vivo administration of estrogen (820 sites/nucleus). Moreover incubation of nuclei with the liver ER preparation resulted in a substantial breakdown of nuclear DNA, making this ER less suitable for DNA binding studies. The temperature-activated calf uterine receptor bound to liver nuclei at 0 degrees C, at which temperature no DNA degradation was measured. To all chicken cell nuclei tested, the receptor bound with a high affinity (Kd = 0.4-1.0 nM). Nuclear binding displayed tissue specificity: oviduct greater than heart, liver greater than spleen greater than erythrocytes and was salt dependent. Calf uterine ER binding in liver nuclei ranged from 3000-6000 acceptor sites per nucleus when assayed under conditions of a constant protein or a constant DNA concentration. Nuclei isolated from estrogen-treated cockerels bound a 2-fold lower number of calf uterine ER complexes when compared to control nuclei. Incubation of nuclei with a fixed concentration of [3H]ER from liver and increasing concentrations of uterine non-radioactive-ER also resulted in a reduced binding of the liver receptor. Both types of experiments suggest that liver and uterine ER compete for a common nuclear acceptor site. Our data demonstrate that the ER from calf uterus is very useful as a probe to examine the nature of the acceptor sites in heterologous chicken target cell nuclei. The assay system functions at 0 degrees C, a temperature at which no DNA degradation occurs.  相似文献   

2.
Examination of binding of androgen-receptor complexes from murine skeletal muscle cytosol was performed by modified nuclear retention assay and modified nuclear acceptor assay. The experiments showed the binding of androgen-receptor complexes to the nuclear acceptor sites to be a cooperative process. Hill analysis of the data obtained resulted in a Hill coefficient of 3,6. The apparent dissociation constant for binding of cytosolic [3H]-testosterone-receptor complexes to nuclei was found to be in the range of KD = 6 ? 8 × 10?11 M. The nuclear matrix was able to bind androgen-receptor complexes in a saturable way, too.  相似文献   

3.
The interaction of tubulin with chromatin has been studied using a radiolabeled tubulin binding assay and velocity sedimentation analysis on isokinetic sucrose gradients. Soluble chromatin was prepared by mild micrococcal nuclease digestion of rat liver nuclei and tubulin was purified from rat brain by temperature-dependent assembly-disassembly and phosphocellulose chromatography. The tubulin-binding assay is based on the ability of chromatin to precipitate quantitatively at physiological ionic strength allowing separation of free tubulin from chromatin-bound tubulin. The binding of tubulin to unfractionated soluble chromatin was rapid, reversible and saturable. Saturation of binding sites was obtained using tubulin concentrations ranging from 0.5 to 400 micrograms/ml, in the presence of a high concentration (2.5 mg/ml) of another acidic protein, bovine serum albumin. The Scatchard and Hill plots showed that tubulin bound to a single class of non-interacting sites and yielded values of (0.5-0.6) X 10(7) M-1 for an apparent Ka and a maximal binding capacity of 0.8 nmol tubulin/mg DNA, i.e. about 1 molecule of tubulin/10 nucleosomes. Similar binding parameters were obtained when binding experiments were performed with insoluble chromatin in 0.15 M NaCl. Velocity sedimentation analysis of tubulin-chromatin complexes revealed that tubulin bound to all classes of chromatin oligomers, irrespective of the length of the nucleosomal chain. Tubulin-trinucleosome complexes formed from isolated trinucleosome in the presence of an excess of tubulin were separated from free reactants. It was found that 10-15% of the starting oligonucleosomal species reacted with tubulin, in a stoichiometry of about 0.8 molecule of tubulin/nucleosome. Given the characteristics of the binding and the expected cellular free tubulin concentration, the tubulin-chromatin interaction could possibly take place in vivo, when the nuclear membrane breaks down during the first steps of mitosis.  相似文献   

4.
Some previous reports on acellular binding of glucocorticoid · receptor complexes to rat liver nuclei have pointed to the conclusion that there exists a small number of high affinity nuclear “receptor” sites. Various investigations lead us to the opposite conclusion and suggest that these results were actually due to the presence, in the cytosol, of one or several macromolecules which inhibited the binding to nuclei of steroid · receptor complexes. The mechanism of this inhibition was examined. It appeared to be due not to a competition between both molecules for the same nuclear acceptor site but to an interaction in the cytosol between teh inhibitor and the steroid · receptor complex which prevented the binding of the latter to the nuclei. The search for high affinity specific acceptor sites was also negative for physiological saline conditions and for the non-salt-extractable fraction of the nuclear receptor. When 940-fold purified receptor · steroid complexes were used, very high concentrations of complexes could be achieved and saturation of nuclei was then observed, but only under physiological ionic strength conditions. However, the interaction was of relatively low affinity (KA = 3.8 · 107 M?1) and to a great number of acceptor sites (N = 26.2 pmol/mg DNA), largely exceeding the cellular concentration of receptor (5.8 pmol/mg DNA).These results suggested that saturation of nuclei by steroid · receptor complexes should not occur in the intact liver cell. They were confirmed by studies on the distribution of steroid · receptor complexes in liver slices incubated with various concentrations of [3H]dexamethasone. For all hormone concentrations a constant proportion (90%) of the complexes was found in the nuclei, thus showing no saturation of the nuclear acceptor sites.  相似文献   

5.
The multiple classes of binding sites for the progesterone-receptor complex in hen oviduct muclei were found to be of chromatin origin. The highest-affinity, and presumably most physiologically important class, is localized in oviduct chromatin and contains approx. 6000-10000 sites per nucleus. None of these sites is detected in spleen chromatin. Two new techniques were used for assaying rapidly the binding of steroid-receptor complexes to soluble deoxyribonucleoproteins in vito. The extent of high-affinity binding by the nucleo-acidic protein fraction from spleen chromatin is as great as that by the nucleo-acidic protein from oviduct chromatin. Consequently the tissue-specific nuclear binding of the progesterone receptor is found not to be a consequence of the absence of the nuclear binding sites (acceptors) from chromatin of non-target tissue (spleen), but rather a result of complete masking of these sites. In the target-tissue (oviduct) chromatin, approx. 70% of the high-affinity acceptor sites are also masked. Acidic proteins, and not histones, appear to be responsible for the masking of these acceptor sites. In addition, acidic proteins represent (or at least are an essential part of) these high-affinity sites in the oviduct nucleus. Pure DNA displays a few high-and many low-affinity binding sites. In support of previous work with immature chicks, the acidic protein fraction of the nucleo-acidic results thus support the hypotheis that protein complexed with DNA, and not DNA alone, represent the high-affinity binding sites for the steroid-receptor complexes in nuclear chromatin. The lower-affinity classes of binding sites may represent DNA and/or other nuclear components.  相似文献   

6.
Nuclear T3 specific binding sites were characterized by Scatchard analyses of L-125I-T3 binding to nuclei extracted from freshly isolated and 1, 2 and 6 day-cultured hepatocytes. The results demonstrate a marked decrease in T3 binding capacity of nuclei extracted from 1 day-cultured cells followed by an almost complete recovery within 6 days. The affinity constant value of nuclear receptor sites is significantly decreased in 1 day-cultured cells with a subsequent partial recovery. The affinity and capacity pattern of nuclear T3 binding sites appears to be in line with the delayed responses of hepatocyte primary cultures to T3.  相似文献   

7.
Nuclear binding sites of T3 in human trophoblastic cells were biochemically characterized. Nuclei were isolated by a combination procedure with mild homogenization of the freshly obtained trophoblastic tissue aged term gestation, centrifugations and Triton X-100 treatment. The isolated nuclei were incubated with various concentrations of 125I-T3 at 20 degrees C for 3 h. The total number of T3 binding sites per nucleus was approximately 650. The apparent association constant (Ka) was 6.0 X 10(9)M-1. Nuclear proteins extracted from purified nuclei with 0.4M KCl were able to bind T3 giving rise to nuclear thyroid hormone binding protein-T3 complexes and they were precipitated with bovine IgG, as a carrier protein, by 12.5% polyethylene glycol. Binding was maximum in 3 h incubation at 20 degrees C or in 18 h at 0 degrees C, while it dropped quickly at 37 degrees C. The binding characteristics were analyzed by Scatchard plots. In nuclear proteins obtained from 8 term placentae there was a single set of high affinity-low capacity T3 binding sites with Ka of 7.0 X 10(9)M-1. The capacity is about 62.7 fmol T3/mg DNA. The binding sites were found to be specific for L-T3, while L-T4 was about 100-fold less effective, rT3 ineffective, and D-T3 and D-T4 were roughly 1/8 and 1/5 as active as L-T3 and L-T4, respectively in displacing 125I-T3 from the binding sites. These data confirmed that human placenta is a target organ of thyroid hormones; trophoblastic cells contain T3 nuclear receptors which are biochemically similar to those isolated from liver, although the capacity is low.  相似文献   

8.
The binding of the radioactive synthetic hormonal steroids [3H]dexamethasone (9 alpha-fluoro-11 beta, 17 alpha, 21-trihydroxy-16 alpha-methyl-1,4-pregnadiene-3,20-dione) and [3H]methyltrienolone (17 beta-hydroxy-17 alpha-methyl-4,9,11-estratien-3-one) to cytosol from rat skeletal muscle was studied using dextran-coated charcoal to separate unbound and receptor-bound steroid. The rates of association, dissociation, and degradation of the complexes of dexamethasone and methyltrienolone with receptor were highly dependent on temperature. The temperature dependence of association was greater for dexamethasone, and that of degradation was greater for methyltrienolone. Dissociation rates were insignificant for both steroid-receptor complexes compared to association and degradation rates. The apparent equilibrium dissociation constants for the binding of dexamethasone and methyltrienolone to their receptor binding sites were about 7 and 0.3 nM, respectively, regardless of temperature (0. 15 or 23 degrees C). The lack of influence of temperature on the equilibrium constants indicate that the binding was of hydrophobic character, and the corresponding free energy changes upon binding of dexamethasone and methyltrienolone to their respective binding sites were -41 and -49 kJ mol-1 under equilibrium conditions at 0 degrees C. The apparent maximum number of binding sites determined from Scatchard plots under these conditions was about 1900 fmol/g of tissue, 3500 fmol/mg of DNA or 30 fmol/mg of protein in the case of the dexamethasone receptor, and the corresponding figures for the methyltrienolone were about 100 fmol/g of tissue, 200 fmol/mg of DNA or 2 fmol/mg of protein. The ligand specificities of the binding sites for dexamethasone and methyltrienolone were typical of a glucocorticoid and an androgen receptor, respectively. Both steroid-receptor complexes were retained on DNA-cellulose columns, and were eluted by NaCl at an ionic strength of 0.1. The DNA-cellulose step purified about 20 times, and was used to allow gel exclusion chromatography and electrofocusing. Both steroid-receptor complexes were excluded from a column of Sephadex G-150. Electrofocusing in preparative columns gave reproducible patterns consisting of three peaks for each receptor. The apparent isoelectric points were 5.4, 5.6 and 6.2 for the glucocorticoid receptor, and 5.9, 6.2 and 8.5 for the androgen receptor.  相似文献   

9.
Dilution at 0 degrees of rat liver cytosol incubated with [3H]triamcinolone acetonide provoked an enhanced binding of steroid-receptor complexes to nuclei. The explanation of this phenomenon was found to be an "activation" of the complexes. Dilution acted by decreasing the concentration of a cytosol inhibitor. This reaction was irreversible at 0 degrees: once activated the complexes could not be reversed to the nonactivated state by the addition of inhibitor. The presence of hormone was necessary, since hormone-free receptor molecules could not be activated by dilution. Removal of the inhibitor did not lead to activation of all complexes: after 24 h a "plateau" was attained where 55 to 70% of the complexes were activated. The inhibitor was shown to be a low molecular weight molecule by dialysis, Sephadex G-25 chromatography, ammonium sulfate precipitation, and ultrafiltration. Thus [3H]triamcinolone acetonide-receptor complexes present in a cytosol from which the inhibitor had been removed by Sephadex G-25 chromatography became spontaneously activated at low ionic strength and at 0 degrees. The inhibitor is not a steroid (at least of usual polarity) since it cannot be extracted by methylene chloride or adsorbed by activated charcoal. It is thermostable (resists to 30 min at 100 degrees). Its removal by incubation with a cation exchange resin suggests that it may be positively charged, however it is not complexed by EDTA. This inhibitor must be distinguished from a previously described inhibitor of steroid-receptor complexes binding to nuclei. The latter compound has been shown in various systems to be responsible for an artifactual saturation of nuclear acceptor by steroid-receptor complexes. It inhibits the binding to nuclear acceptors of already activated complexes and is probably a macromolecule. It is thus different from the low molecular weight activation inhibitor described in the present paper.  相似文献   

10.
1. The binding to isolated muscle nuclei of the complex of dexamethasone with cytosol receptors from rat soleus (Sol) and extensor digitorum longus (EDL) muscles was measured. 2. The ratio of bound to total amount of complex was higher in Sol. 3. The binding of complex per mg of cytosol protein was also higher in Sol. 4. These results suggest that activation and nuclear binding of the steroid-receptor complex are not the sites of the different sensitivity of the two muscle types to glucocorticoid.  相似文献   

11.
L L Hicks  P C Walsh 《Steroids》1979,33(4):389-406
A microassay utilizing R 1881 (methyltrienolone) has been developed for the measurement of androgen receptor sites in the cytosol and nuclear extract of human prostatic tissue. Binding of R 1881 to the progesterone binding molecule in cytosol was eliminated by the addition of triamcinolone acetonide. Utilizing a six tube, single point assay, the number of binding sites estimated in nuclear extract averaged 95% of the number measured by a full 7 point Scatchard analysis; the number estimated by the microassay in cytosol averaged 91%. When the single point assay was applied to needle biopsy specimens (200 mg of tissue), the estimated number of binding sites in nuclei averageed 83% of the number measured in bulk tissue (2 grams) utilizing a 7 point Scatchard analysis; the number in cytosol estimated by the microassay on needle biopsy specimens averaged 73%. It is hoped that this technique may be useful in correlating receptor content with hormonal responsiveness in men with metastatic carcinoma of the prostate.  相似文献   

12.
Thyroid hormones have diverse effects on growth and metabolism. Specific "receptor" proteins which bind triiodothyronine and other biologically active analogs and which may be involved in thyroid hormone action have been recently found in nuclei of responsive tissues. This report presents studies of these receptors in rat liver nuclei. Confirming previous reports, a Scatchard analysis of the binding data suggests the reaction, triiodothyronine + specific receptor in equilibrium with triiodothyronine-receptor complex, with an apparent equilibrium dissociation constant (Kd) at 22 degrees of about 190 pM and a capacity of about 1 pmol of triiodothyronine-binding sites per mg of DNA. The kinetics of the binding were also examined. Triiodothyronine-receptor complex formation is second order and dissociation is first order. The apparent association (k+1) and dissociation (k minus 1) rate constants at 22 degrees are, respectively, 4.7 times 10-7 m-minus 1 min-minus 1 and 7.6 times 10-minus 3 min-minus 1. The apparent Kd, estimated from the ratio of the rate constants (k minus 1:k+1), was about 150 pM, similar to that determined from the equilibrium data. These data support the expression written above for the interaction of thyroid hormone with its receptor. Additional kinetic experiments indicate that some of the triiodothyronine binding by cell-free nuclei is to sites previously occupied by hormone in the intact animal, providing further evidence that the intact cell and cell-free reactions are the same. It was previously found that nuclear-bound triiodothyronine is localized in chromatin. We found that isolated chromatin retains specific binding activity similar to that of isolated nuclei. Thus, binding may not require cytoplasmic, nucleoplasmic, or nuclear membrane factors. These findings may imply that chromatin localization of the receptor does not depend on the hormone. This idea is supported by an earlier finding that binding activity is present in nuclei from thyroidectomized animals. However, many stimuli such as steroid hormones, bacterial inducers, and cyclic adenosine 3':5'-monophosphate in bacteria influence regulatory proteins at the gene level by promoting the protein's addition to or removal from chromatin. Thus, we studied the effect of thyroid hormone on the nuclear content of receptors under assay conditions of receptor stability and reversible binding. Receptor levels in hypothyroid animals are identical with those in euthyroid animals. These data suggest that the hormone does not influence the nuclear localization of receptors. Thus, the basis for thyroid hormone action may be to regulate the activity of receptors resident in chromatin rather than to promote receptor addition to or removal from chromatin.  相似文献   

13.
14.
The role of DNAs in the nuclear binding of dexamethasone-receptor complexes (DRC) was studied. The cytosolic receptors from rat liver have a sedimentation coefficient of about 7S, the Stock's radius--of about 50 A and possess a high affinity to dexamethasone (Kas = 2,6 X 10(8) M-1). Their capacity is 3 X 10(-13) and 5.5--7.0 X 10(-12) mole of dexamethasone per mg cytosolic protein and mg DNA, respectively. DRC has the ability to bind to the nuclei of rat liver. DRC binding to nuclei is increased approximately 3-fold by temperature activation of cytosol. The nuclear acceptor sites are saturated at the level of 16.2 pmoles of bound DRC per mg nuclear DNA. Free DNA has the ability to compete with nuclei for binding with DRC. Temperature-activated DRC can bind both with homo- and heterologous DNAs. Secondary DRC-DNA complexes were isolated by means of gel filtration on Sepharose 4B. Thermal denaturation of DNA decreases its ability to bind DRC approximately 2-fold. DNAs of a similar nucleotide composition, i.e. DNA from rat liver (GC = 43 mole%) and DNA from Photobacterium belozerskii (GC = 44 mole%), have a close DRC-binding ability. At the same time, these DNAs bind about 1.5-fold less DRC, as compared to DNA from Pseudomonas aeruginosa (GC = 67 mole%) and about 1.5-fold more, than does DNA from T2 phage (GC = 35 mole%). Thus the positive correlation between the GC composition of DNA and its DRC-binding ability was established. Unique sequences (Cot greater than 600) bind several times less DRC than the reiterated sequences (also denaturated) (Cot = O--600) of rate liver DNA. Thus, DNA can be considered as a nuclear acceptor of DRC. It is assumed, that DRC is able to recognise in DNA certain short GC-rich sequences, distributed in the rate genome in a non-random fashion.  相似文献   

15.
Hydrocortisone (HC) induces glutamine synthetase in the embryonic chick neural retina. The binding of cytoplasmic receptor-hydrocortisone (R-HC) complexes to isolated retina nuclei has been studied in a cell-free system. Optimal conditions, specificity and quantitative aspects of binding were determined. The isolated nuclei retained binding specificity for the R-HC complex prepared from retina cytosol. Free HC, estradiol-receptor complexes from retina cytosol and HC-receptor complexes from mouse brain cytosol or from chick serum did not bind to the nuclei. Assuming monovalency of the binding sites, the number of nuclear acceptor sites per retina cell for the R-HC complex was estimated to be in the range of 1500. These sites were resistant to RNAse but sensitive to DNAse.  相似文献   

16.
The binding of the "activated" receptor-glucocorticoid complexes of cultured rat hepatoma cells to nuclei, chromatin, and DNA has been studied under cell-free conditions. A critical factor in determining the shape of the binding curve is shown to be an inhibitory material which is present in crude cytosol and which can be removed without destroying the receptor-steroid complex. These and other results argue that the apparent saturation observed in earlier experiments may have been due to the inhibitors. Thus, the actual number of acceptor sites in hepatoma tissue culture cell nuclei is much larger than previously estimated and their affinity for the complex is lower. Nuclear binding experiments indicate that the inhibitory material interacts with the receptor-steroid complex. The inhibitors appear to be macromolecular; but their effects cannot be mimicked by albumin or hemoglobin. The acceptor capacity at low ionic strength for binding receptor-glucocorticoid complexes increases when proceeding from nuclei to DNA. An analysis of the kinetics of association and dissociation and of the relative binding behavior of nuclei and DNA argues that the affinity of complex for nuclei is much greater than for DNA. DNA-associated histones reduce the amount of complex that binds to DNA. These and perhaps other chromosomal proteins may be responsible for the ordering of acceptor capacity. Evidence is presented that the difference in affinities of nuclear and DNA acceptors could also be due to chromosomal proteins. In nuclei, these proteins may thus both reduce the amount of complex binding by rendering regions of DNA less accessible and increase the binding affinity of some, or all, of those DNA binding sites which remain exposed.  相似文献   

17.
Binding of 3H-dexamethasone (Dex)-rat liver cytoplasmic receptor complex to nuclei from fetal rat livers in vitro exhibited a high-affinity and saturable nature (Kd=1.5 X 10- M, maximal binding sites=470 fmole/mg DNA), and the binding was inhibited competitively by prior injection of Dex in vivo. While binding of 3H-Dex-receptor complex to nuclei from adult rat liver was in low affinity and unsaturable, and injection of Dex prior to the sacrifice of animals did not influence the nuclear binding to 3H-Dex-receptor complex in vitro. Differential salt-extraction with KCl solution of the nuclear bound 3H-Dex receptor complex revealed the presence of salt-extractable and residual forms of bound receptors. The amount of the fraction extracted with 0.3 M KCl reached its maximum at 10 min after the start of incubation, while the 1.0 M KCl-extractable and residual fractions reached their maximum plateaus after 30 min of the incubation. Scatchard analysis revealed that the binding of the receptor complex to the 0.3M and 1.0M KCl fractions was saturable, while the residual fraction did not show any tendency of saturation under the experimental conditions employed in the present study. The results obtained in this work were compared to those which have been reported by other investigators.  相似文献   

18.
To examine the binding specificity of steroid hormone-cytoplasmic receptor complexes to nuclei, binding of 3H-dexamethasone (Dex)-liver, 3H-Dex-thymus and 3H-dihydrotestosterone (DHT)-prostate receptor complexes to nuclei from liver, prostate, thymus, spleen and kidney was studied. It was observed that a significant amount of steroid-receptor complexes was bound to any nuclei used in the present study and the extent of the binding of receptor complexes to nuclei from homologous tissues was not always greater than that to nuclei from heterogenous tissues. However, a significant portion of the 3H-Dex-liver and 3H-DHT-prostate receptor complexes was not absorbed by nuclei from kidney, spleem, and thymus, and the unabsorbed complexes were efficiently bound to liver and prostate nuclei. The results obtained indicate that two types of receptor complex with regard to nuclear binding were present in cytosols of liver and prostate; one binds to nuclei from kidney, spleen, thymus, liver and prostate and the other does not bind to nuclei from kidney, spleen and thymus but does bind to nuclei of liver and prostate. The latter type of receptor complex was not observed in the cytosol from the thymus.  相似文献   

19.
DNA has been implicated as the nuclear acceptor for receptor-glucocorticoid complexes. The present study concerns the interaction of these complexes, isolated from cultured rat hepatoma cells, with purified DNA. This association is rapid, reaching a maximum within a few minutes at 0 degrees, whereas dissociation requires several hours. DNA binds neither free glucocorticoids nor those complexed with transcortin or cytosol proteins different from the receptor. Receptors which are not complexed by steroid have little or no affinity for DNA. "Activation," necessary for the binding of receptor-steroid complexes to isolated nuclei, also enhances DNA binding. The capacity of DNA for binding receptor-steroid complexes is large; saturation was not observed at the complex concentrations studied, using either crude or partially purified receptor preparations. The association of complexes with DNA is inhibited by divalent cations, at increasing ionic strengths, and by mercurial reagents. Complexes bind equally well to bacterial, bacteriophage, or rat DNA; however, there was either no or substantially reduced binding by bacterial 23 S rRNA. The binding of complexes to native DNA is roughly 3-fold greater than to denatured DNA. These characteristics are consistent with the possibility that DNA is the nuclear acceptor for receptor-glucocorticoid complexes; however, the actual composition of the acceptor sites remains unknown.  相似文献   

20.
Binding of highly purified glucocorticoid receptor complexes to nuclear matrix was evaluated. Extraction of purified nuclei with 2M potassium chloride and brief deoxyribonuclease digestion leaves a matrix structure containing 1% of nuclear DNA and 6-12% of nuclear proteins. The nuclear matrix retained two binding sites for receptor complexes, a high affinity, low capacity site and a low affinity, high capacity site. These sites have affinities and capacities consistent with those reported for binding of these complexes to intact nuclei. More extensive deoxyribonuclease treatment of the matrix resulted in a marked reduction of high affinity complex binding. Furthermore, the DNA binding form of the receptor complex but not the unactivated receptor complex bound to DNA fibers anchored to nuclear matrix as visualized by 18 nm gold particle receptor complexes. The data suggest that the nuclear matrix is the major site for coordinating glucocorticoid hormone action in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号