首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
18- and 11beta-Hydroxylation of deoxycorticosterone and side chain cleavage of cholesterol were studied in mitochondria and submitochondrial reconstituted systems prepared from rat and bovine adrenals. A mass fragmentographic technique was used that allows determination of hydroxylation of both exogenous and endogenous cholesterol. The following results were obtained. (1) Treatment of rats with excess potassium chloride in drinking fluid increased mitochondrial cytochrome P-450 as well as 18- and 11beta-hydroxylase activity in the adrenals. Cholesterol side chain cleavage was not affected. In the presence of excess adrenodoxin and adrenodoxin reductase, cytochrome P-450 isolated from potassium chloride-treated rats had higher 18- and 11beta-hydroxylase activity per nmol than cytochrome P-450 isolated from control rats. The stimulatory effects on 18- and 11beta-hydroxylation were of similar magnitude. (2) Long-term treatment with ACTH increased cholesterol side chain cleavage in the adrenals but had no effect on 18- and 11beta-hydroxylase activity. The amount of cytochrome P-450 in the adrenals was not affected by the treatment. It was shown with isolated mitochondrial cytochrome P-450 in the presence of excess adrenodoxin and adrenodoxin reductase that the effect of ACTH was due to increase of side chain cleavage activity per nmol cytochrome P-450. Side chain cleavage of exogenous cholesterol was affected more than that of endogenous cholesterol. (3) Gel chromatography of soluble cytochrome P-450 prepared from rat and bovine adrenal mitochondria yielded chromatographic fractions having either a high 18- and 11beta-hydroxylase activity and a low cholesterol side chain cleavage activity or the reverse. The ratio between 18- and 11beta-hydroxylase activity was approximately constant, provided the origin of cytochrome P-450 was the same. (4) Addition of progesterone to incubations of deoxycorticosterone with soluble or insoluble rat adrenal cytochrome P-450 competitively inhibited 18- and 11beta-hydroxylation of deoxycorticosterone to the same degree. Addition of deoxycorticosterone competitively inhibited 11beta-hydroxylation of progesterone with the same system. Progesterone was not 18-hydroxylated by the system. From the results obtained, it is concluded that 18- and 11beta-hydroxylation have similar properties and that the binding site for deoxycorticosterone is similar or identical in the two hydroxylations. The possibility that the same specific type of cytochrome P-450 is responsible for both 18- and 11beta-hydroxylation of deoxycorticosterone is discussed.  相似文献   

2.
18-Hydroxylation of deoxycorticosterone was studies with rat or bovine adrenal mitochondria or with reconstituted systems obtained from these fractions. The reconstituted systems consisted of a partially purified preparation of cytochrome P-450 from rat adrenals and a partially purified NADPH-cytochrome P450 reductase preparation from bovine adrenals. In some experimenta a soluble cytochrome P-450 fraction from bovine adrenals was used. Adrenodoxine and adrenodoxine reductase were shown to be the active components of the NADPH-cytochrome P-450 reductase preparation. Optimal assay conditions were determined for 18-hydroxylation by the crude mitochondrial fraction as well as by the reconstituted systems. In the presence of excess NADPH-cytochrome P-450 reductase fraction, the rate of 18-hydroxylation was linear with time and with the amount of cytochrome P-450. In incubations with intact rat adrenal mitochondria to which Ca2+ and an excess NADPH had been added, NADPH-cytochrome P-450 reductase increased the rate of 18-hydroxylation about 100%, indicating that NADPH-cytochrome P-45o reductase was to some extent rate-limiting. The rate of 18-hydroxylation of deoxycorticosterone by the reconstituted system as well as by intact mitochondrial fraction was much higher than the rat of 18-hydroxylation of corticosterone and progesterone. When the cytochrome P-450 preparation from rat adrenals in the reconstituted system was substituted for cytochrome P-450 from bovine adrenals, the rate of 18-hydroxylation decreased considerably. Under all experimental conditions, the 18-hydroxylation of deoxycorticosterone occurred with a concomitant and efficient 11beta-hydroxylation. Provided the source of cytochrome P-450 was the same, the ratio between 11beta- and 18hydroxylation was constant under all conditions and was not significantly different in the presence of metopirone, carbon monoxide, cytochrome c or different steroids. It is suggested that identical or at least very similar types of cytochrome P-450 are involved in 11beta- and 18-hydroxylation of deoxycorticosterone.  相似文献   

3.
Steroid-induced difference spectra have been used to examine the combination of cholesterol with adrenal mitochondrial cytochrome P-450 which participates in cholesterol side chain cleavage (P-450scc) and the depletion of cholesterol from the cytochrome which results from turnover of the enzyme system. Type I difference spectra-induced by cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and cholest-5-ene-3beta, 20 alpha, 22R-triol (20alpha, 22R dihydroxycholesterol) have been used to quantitate binding of cholesterol to two sites (I and II) on cytochrome P-450scc. The action of adrenocorticotropic hormone (ACTH) in vivo and the action of calcium or phosphate ions on isolated mitochondria stimulate the combination of cholesterol with site I but not site II. Cholesterol derived from lecithin-cholesterol micelles, however, binds to both sites. Malate-induced cholesterol depletion occurred at a comparable rate to the transfer of cholesterol from lecithin-cholesterol micelles. However, a residual proportion of cholesterol-cytochrome P-450scc complexes remained, even after 10 min of exposure to malate, and was of similar magnitude in mitochondria from both cycloheximide-treated and stressed rats. It is suggested that this reflects a less reactive form of cholesterol-cytochrome complex. Steroid-induced difference spectra indicate that sites I and II on cytochrome P-450scc are similarly depleted after metabolism of mitochondrial cholesterol in vitro and after inhibition of the action of ACTH in vivo. Anaerobiosis of adrenal cells after excision of the accumulation of cholesterol at cytochrome P-450cc. When anaerobiosis was prevented, cytochrome P-450scc in the freshly isolated mitochondria was apparently essentially free of complexed cholesterol, irrespective of the extent of ACTH action. For 30 min after suspension of the mitochondria in 0.25 M sucrose at 4 degrees, cholesterol combines with cytochrome P-450scc. The extent of this process was not affected by the presence of cycloheximide during ether stress treatment of the rats. It is concluded that there are at least two pools of mitochondrial cholesterol with access to cytochrome P-450scc but that ACTH stimulates only the pool which most readily interacts with the cytochrome.  相似文献   

4.
Binding of tritiated cortisol to adrenal zona glomerulosa mitochondria was studied and compared with that of corticosterone. Cortisol was shown to bind specifically to the inner membrane of zona glomerulosa mitochondria. Corticosterone and cortisol had similar apparent association constants (Ka) and concentrations of binding sites. The methodology was validated by obtaining similar Ka from both binding plots and kinetic data. Cortisol binding was inhibited by pretreatment with sodium dithionite, and displaced by deoxycorticosterone, corticosterone, 18-hydroxy-corticosterone, 11 beta-hydroxy-18-ethynyl-progesterone and metyrapone, but not by cholesterol. These results suggest that cortisol and corticosterone bind to the same cytochrome P-450.  相似文献   

5.
Cytochrome P-45011beta has been solubilized and partially purified from bovine adrenal cortex mitochondria by means of chromatography on Octyl-Sepharose CL-4B or DEAE-Sepharose CL-6B. The partially purified P-450 preparations were about 90% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but had a low specific content of P-450 (between 1 and 2 nmol of P-450 per mg of protein). In the presence of purified preparations of adrenodoxin reductase and adrenodoxin, the partially purified P-450 preparations catalyzed NADPH-supported 11beta-hydroxylation of unconjugated and sulfoconjugated deoxycorticosterone. In the reconstituted system the hydroxylation of deoxycorticosterone sulfate proceeded at a much higher rate than in intact mitochondria, indicating that in the former case interactions between the hydrophilic substrate and P-450 were facilitated. In the presence of Triton X-100 the partially purified cytochrome P-45011beta had a Stokes radius of 4.5 nm, a sedimentation coefficient of 3.1 S, and a partial specific volume of about 0.85 cm3/g. These results indicate that the cytochrome P-45011beta . Triton X-100 complex had a molecular weight of about 100,000 and that P-45011beta bound about 1.1 g of Triton X-100 per g of protein. The P-45011beta . Triton X-100 complex was catalytically active in hydroxylation reactions supported by NADPH or the hydroxylating agent ortho-nitroiodosobenzene, suggesting that the monomer of cytochrome P-45011beta is the active form of the protein.  相似文献   

6.
It is not clear if an increase in intra-adrenal cortisol is required to mediate the actions of adrenocorticotropic hormone (ACTH) on adrenal growth and steroidogenesis during the prepartum stimulation of the fetal pituitary-adrenal axis. We infused metyrapone, a competitive inhibitor of cortisol biosynthesis, into fetal sheep between 125 and 140 days of gestation (term = 147 +/- 3 days) and measured fetal plasma cortisol, 11-desoxycortisol, and ACTH; pituitary pro-opiomelanocortin mRNA and adrenal expression of ACTH receptor (melanocortin type 2 receptor), steroidogenic acute regulatory protein (StAR), 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), cytochrome P450 17-hydroxylase (CYP17), 3beta-hydroxysteroid dehydrogenase, and cytochrome P450 21-hydroxylase mRNA; and StAR protein in the fetal adrenal gland. Plasma ACTH and 11-desoxycortisol concentrations were higher (P < 0.05), whereas plasma cortisol concentrations were not significantly different in metyrapone- compared with vehicle-infused fetuses. The ratio of plasma cortisol to ACTH concentrations was higher (P < 0.0001) between 136 and 140 days than between 120 and 135 days of gestation in both metyrapone- and vehicle-infused fetuses. The combined adrenal weight and adrenocortical thickness were greater (P < 0.001), and cell density was lower (P < 0.01), in the zona fasciculata of adrenals from the metyrapone-infused group. Adrenal StAR mRNA expression was lower (P < 0.05), whereas the levels of mature StAR protein (30 kDa) were higher (P < 0.05), in the metyrapone-infused fetuses. In addition, adrenal mRNA expression of 11betaHSD2, CYP11A1, and CYP17 were higher (P < 0.05) in the metyrapone-infused fetuses. Thus, metyrapone administration may represent a unique model that allows the investigation of dissociation of the relative actions of ACTH and cortisol on fetal adrenal steroidogenesis and growth during late gestation.  相似文献   

7.
Li LA  Xia D  Wei S  Hartung J  Zhao RQ 《Steroids》2008,73(8):806-814
Our previous study demonstrated significant difference in the basal plasma cortisol levels between Erhualian (EHL) and Pietrain (PIE) pigs, implicating fundamental breed difference in adrenocortical function. The objectives of the present study were therefore to characterize the expression pattern of proteins involved in adrenal ACTH signaling and, including melanocortin type 2 receptor (MC2R), cAMP response element binding protein (CREB) and phosphorylated CREB (pCREB), steroidogenic acute regulatory protein (StAR), as well as that of the key enzymes involved in steroidogenesis in EHL and PIE pigs, in association with the plasma corticotrophin (ACTH) and cortisol levels. The plasma concentrations of the substrates for adrenal steroidogenesis, cholesterol and low-density lipoprotein (LDL) cholesterol, did not differ between breeds. Plasma concentration of ACTH and the adrenal contents of MC2R mRNA and protein were similar in two breeds of pigs, whereas the basal plasma concentrations of cortisol in EHL pigs were 1.5 folds higher than that in PIE pigs. The higher basal plasma cortisol levels in EHL pigs were found to be accompanied with the higher expression of ACTH post-receptor signaling components, cAMP, pCREB and StAR, as well as the higher expression of cholesterol side-chain cleavage cytochrome P450 (P450scc), 17alpha-hydroxylase cytochrome P450 (P450(17alpha)), 21-hydroxylase cytochrome P450 (P450c21) and 11beta-hydroxylase cytochrome P450 (P450(11beta)). These results indicated that the enhanced cAMP/PKA/pCREB-signaling system and augmented expression of StAR and steroidogenic enzymes are major attributes to the higher basal plasma cortisol concentrations in pigs.  相似文献   

8.
The binding of cholest-5-ene-3beta,20alpha-diol (20alpha-hydroxycholesterol), 11-deoxycorticosterone, and aminoglutethimide to cytochrome P-450 in bovine adrenal mitochondria was measured by changes in optical spectra at room temperature and by EPR spectra at 14 K. The two methods provided nearly identical quantitation of these interactions with cytochrome P-450. Two distinct high spin forms of cytochrome P-450 were revealed by EPR spectra. The predominant high spin species (g = 8.2) was decreased by addition of 20alpha-hydroxycholesterol and elevated pH but was increased by addition of cholesterol. The minor high spin species (g = 8.1) was incrreased by addition of deoxycorticosterone but decreased by low concentrations of metyrapone. The two forms were evidently not in equilibrium and have been assigned to distinct forms of cytochrome P-450 involved in, respectively, cholesterol side chain cleavage (P-450scc) and steroid 11beta hydroxylation (P-450(11)beta). The high spin states are derived from complexes of these P-450 cytochromes with endogenous substrates, which are, respectively, cholesterol and deoxycorticoids. A high to low spin transition was observed when these complexes were turned over by initiating hydroxylation with malate. The contributions of cytochromes P-450(11)beta and P-450scc to the low spin spectrum were also resolved by similar means. At least 20% of P-450scc is in the low spin state while about 90% of P-450(11)beta is low spin in isolated beef adrenal mitochondria. Low spin complexes of cytochrome P-450scc with 20alpha-hydroxycholesterol and 3beta-hydroxypregn-5-ene-20-one (pregnenolone) gave distinct EPR spectra. Aminoglutethimide interacted with the total cytochrome P-450 content of the bovine adrenal mitochondria forming low spin complexes. Both optical and EPR data indicated binding to two forms of cytochrome P-450. These results suggest a detailed correlation between the spin state and absorbance changes seen at room temperature, illustrate that EPR allows the distinction of two principal forms of P-450, and suggest that there is no appreciable change in the spin state of either cytochrome between 14 K and 300 K.  相似文献   

9.
Purified bovine P-450scc, the cholesterol side-chain cleaving P-450 in adrenal cortex mitochondria, was found to catalyze a deoxycorticosterone 6 beta-hydroxylase reaction. A turnover number (moles of product formed/min/mol of P-450) of 12 was found similar to that for cholesterol side chain cleavage activity. Conversion was dose-dependent in terms of P-450scc and no reaction took place when any one of the required electron donating components such as NADPH, NADPH-adrenodoxin reductase, or adrenodoxin was omitted. These results confirm and extend earlier observations that 21-hydroxypregnenolone is transformed into both deoxycorticosterone and 6 beta-hydroxydeoxycorticosterone by incubation of adrenal gland slices.  相似文献   

10.
Adrenocortical mitochondrial cytochrome P-450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11beta-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0 degrees C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11beta-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents. Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

11.
Binding of deoxycorticosterone to cytochrome P-450 of the 11β-hydroxylase system in adrenal cortex mitochondria was inhibited by the nonpenetrating protein reagent diazobenzenesulfonate in damaged but not in intact mitochondria. The slowly penetrating hydrophilic substrate deoxycorticosterone 21-sulfate showed a slow binding to cytochrome P-450 as compared to the hydrophobic nonesterified steroid. In contrast, the esterified and nonesterified steroids bound equally fast in sonicated, aged or lysolecithin-treated mitochondria. These data imply that the steroid substrates must penetrate the inner mitochondrial membrane to interact with the 11β-hydroxylase system.  相似文献   

12.
The electron paramagnetic resonance (EPR) spectra of rat adrenal zona fasciculate mitochondria showed peaks corresponding to low spin ferric cytochrome P-450 with apparent g values of 2.424, 2.248 and 1.917, and weak signals due to high spin ferric cytochrome P-450 with gx values of 8.08 and 7.80. The former is attributed to cholesterol side chain cleavage cytochrome P-450, the latter to 11beta-hydroxylase cytochrome P-450. On addition of deoxycorticosterone the g = 7.80 signal was elevated and there was an associated drop in the low spinal signal. As the pH was reduced from 7.4 to 6.1, the g = 8.08 signal increased with again a drop in intensity of the low spin signal. Mitochondria from the zona glomerulosa showed similar spectral properties to those described above. Addition of succinate, isocitrate or pregnenolone caused a loss of the g = 8.08 signal. Addition of calcium increased the magnitude of the g = 8.08 signal, and caused a slight reduction in the magnitude of the low spin signal. Also, addition of deoxycorticosterone, pregnenolone, succinate or isocitrate caused slight shifts of the outer lines of the low spin spectrum. Interaction of mitochondrial cytochrome P-450 with metyrapone and aminoglutethimide modified the low spinal parameters. Adrenal microsomal cytochrome P-450 had low spin ferric g values of 2.417, 2.244 and 1.919 and a high spin ferric gxy values of 7.90 and 3.85, distinct from the values obtained with mitochondria.  相似文献   

13.
Studies were conducted to further examine the mechanisms responsible for gonadal hormone effects on the rat adrenocortical 11beta-hydroxylase system. Despite higher concentrations of cytochrome P-450 and larger 11-deoxycorticosterone (DOC)-induced difference spectra in adrenal mitochondria from females than males, no sex difference in 11beta-hydroxylase activity was observed. The pregnenolone-induced difference spectrum, indicative of cholesterol binding to cytochrome P-450, also was similar in males and females. Testosterone administration to castrated males lowered both 11beta-hydroxylase activity and mitochondrial cytochrome P-450 content. Estradiol produced the opposite effects in castrated females. However, when given to ACTH-replaced hypophysectomized rats, neither testosterone nor estradiol affected cytochrome P-450 levels or the rate of 11beta-hydroxylation. These observations, taken with the known effects of estradiol and testosterone on ACTH secretion in rats and the effects of ACTH on 11beta-hydroxylation, indicate that gonadal hormone effects on the 11beta-hydroxylase system are mediated by ACTH.  相似文献   

14.
A human cytochrome P-450 with aldosterone synthase activity was purified from the mitochondria of an aldosterone-producing adenoma. It was recognized by an anti-bovine cytochrome P-450(11 beta) IgG and by a specific antibody raised against a portion of the CYP11B2 gene product, one of the two putative proteins encoded by human cytochrome P-450(11 beta)-related genes (Mornet, E., Dupont, J., Vitek, A., and White, P. C. (1989) J. Biol. Chem. 264, 20961-20967). A similar and probably the same aldosterone synthase cytochrome P-450 was detected in the adrenal of a patient with idiopathic hyperaldosteronism. These aldosterone synthases were distinguishable from cytochrome P-450(11 beta), the product of another cytochrome P-450(11 beta)-related gene, i.e. CYP11B1, by their catalytic, molecular, and immunological properties and also by their localization. The latter enzyme was unable to produce aldosterone and did not react with the specific antibody against the CYP11B2 gene product. It was present both in tumor and non-tumor portions of the adrenals carrying the adenoma and in normal adrenal cortex. On the other hand, aldosterone synthase cytochrome P-450 localized in the tumor portions of the adrenals or in the adrenal of a patient with idiopathic hyperaldosteronism. Thus aldosterone synthase cytochrome P-450, a distinct species from cytochrome P-450(11 beta), is responsible for the biosynthesis of aldosterone in the human, at least in patients suffering from primary aldosteronism.  相似文献   

15.
ACTH regulation of cholesterol movement in isolated adrenal cells   总被引:3,自引:0,他引:3  
Confluent bovine adrenal cell primary cultures respond to stimulation by adrenocorticotropin (ACTH) to produce steroids (initially predominantly cortisol and corticosterone) at about one-tenth of the output of similarly stimulated rat adrenal cells. The early events of steroidogenesis, following ACTH stimulation, have been investigated in primary cultures of bovine adrenal cortical cells. Steroidogenesis was elevated 4-6-fold within 5 min of exposure to 10(-7) M ACTH and increased linearly for 12 h and declined thereafter. Cholesterol side-chain cleavage (SCC) activity was increased 2.5-fold in mitochondria isolated from cells exposed for 2 h to ACTH and 0.5 mM aminoglutethimide (AMG), even though cytochrome P-450scc only increases after 12 h. Mitochondrial-free cholesterol levels increased during the same time period (16.5-25 micrograms/mg of protein), but then both cholesterol levels and SCC activity declined in parallel. More prolonged exposure to ACTH prior to addition of AMG caused the elevation in mitochondrial cholesterol to more than double, possibly due to enhanced binding capacity. Early ACTH-induced effects on cellular steroidogenesis result from these changes in mitochondrial-free cholesterol. The maximum rate of cholesterol transport to mitochondria in AMG-blocked cells was consistent with the maximum rate of cellular steroidogenesis. Cycloheximide (0.2 mM) rapidly blocked (less than 10 min) cellular steroidogenesis, cholesterol SCC activity, and access of cholesterol to cytochrome P-450scc without affecting mitochondrial-free cholesterol. Exposure of confluent cultures to the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (10(-8) M), for 24 h prior to ACTH addition decreased the rates of ACTH- and cAMP-stimulated steroidogenesis but did not affect the basal rate. In both cases, the effectiveness of TCDD increased with time of exposure to the stimulant. Although cholesterol accumulated in the presence of ACTH and AMG (13-28 micrograms/mg), pretreatment of cells with TCDD caused a decrease in mitochondrial cholesterol (13-8 micrograms/mg). The effect of TCDD was produced relatively rapidly (t1/2 approximately 4 h). Since even in the absence of TCDD, the mitochondria of ACTH-stimulated cells also eventually lose cholesterol (after 2 h) TCDD pretreatment may increase the presence of a protein(s) that cause this mitochondrial-cholesterol depletion following stimulation by ACTH or cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The developmental expression of adrenocortical steroid hydroxylases was studied in bovine fetuses from 40 to 280 days gestational age. The expression of P-450(17 alpha) is first detected at a gestational age of 50 days and reaches a maximum at 60-70 days. The expression of P-450(17 alpha) then declines and is nondetectable at a gestational age of 100 days. P-450(17 alpha) is not expressed again until about 240 days, i.e. shortly before birth (approximately 280 days). P-450scc, P-450c21, P-450(11 beta) and adrenodoxin were present in fetal adrenals throughout gestation. This "on-off-on" pattern of P-450(17 alpha) expression during fetal development was associated with a corresponding episodic production of cortisol. Immunoreactive corticotropin (ACTH) levels in fetal plasma were elevated in small fetuses (corresponding to less than or equal to 100 days) and in near-term fetuses (corresponding to greater than 250 days) compared with those in mid-gestation fetuses. In primary culture, adrenal cells from mid-gestation fetuses contained no detectable P-450(17 alpha) but rapidly responded to ACTH with an increase in P-450(17 alpha) protein and mRNA. The tissue specificity of the developmental patterns is emphasized by the fact that both P-450(17 alpha) and P-450scc were detectable throughout the development of the fetal testes, whereas only P-450scc was detectable in fetal bovine ovary prior to 200 days. Thus, in fetal bovine adrenal it appears that ACTH is the major regulatory factor effecting the intermittent presence of P-450(17 alpha), whereas the presence of the other steroid hydroxylases is either regulated by additional factors or shows a much different sensitivity to ACTH.  相似文献   

17.
Recombinant DNA technology can permit study of the regulation of steroid hydroxylase gene expression at three levels. The first of these is cAMP-regulated gene expression. In the adrenal, ACTH, via cAMP, increases the expression of the genes for all of the cytochrome P-450 species involved in the steroid biosynthetic pathway, as well as the iron-sulfur protein, adrenodoxin. This action of cAMP is inhibited by cycloheximide, suggestive of the involvement of a regulatory protein factor in mediating this action of cAMP. The second level is tissue-specific regulation of steroid hydroxylase gene expression. An example of this which we have studied is the expression of cholesterol side-chain cleavage cytochrome P-450 (P-450sec) and 17 alpha-hydroxylase cytochrome P-450 (P-450(17) alpha) in the bovine ovary. P-450sec is expressed at high levels in the corpus luteum but at low levels in follicles, whereas P-450(17)alpha is expressed in follicles, but is undetectable in the corpus luteum. The third level is fetal imprinting. A number of the cytochrome P-450 species involving in the steroidogenic pathway are expressed in the fetal adrenal at a time when exposure of the gland to ACTH is very low, suggestive that factor(s) other than pituitary ACTH mediate this expression in fetal life.  相似文献   

18.
A quantitative analysis of zone-specific proliferation was done to determine the recovery of adrenal cortical zonation during regeneration after enucleation. Adult male rats underwent adrenal enucleation [unilateral enucleation (ULE)] or sham surgery, both accompanied by contralateral adrenalectomy. At 2, 5, 10, and 28 days, blood and adrenals were collected to assess functional recovery. Adrenal sections were immunostained for Ki67 (proliferation), cytochrome P-450 aldosterone synthase (P-450aldo, glomerulosa), and cytochrome P-450 11beta-hydroxylase (P-45011beta, fasciculata). Unbiased stereology was used to count proliferating glomerulosa and fasciculata cells. Recovery of fasciculata secretory function occurred by 28 days as reflected by plasma ACTH and corticosterone, whereas glomerulosa function reflected by plasma aldosterone remained low at 28 days. At 5 days, ULE adrenals showed increased Ki67+ cells in the glomerulosa and inner fasciculata, whereas at 10 and 28 days increased proliferation was restricted to the outer fasciculata. These data show that enucleation results in transient elevations in glomerulosa and inner fasciculata cell proliferation followed by a delayed increase in the outer fasciculata. To assess adrenal growth in enucleated adrenals previously suppressed by the presence of an intact adrenal, rats underwent ULE and sham surgery; after 4 wk, the intact adrenal was removed and enucleated adrenals were collected at 2, 5, and 10 days. Overall, proliferation was delayed in this model, but at 5 days, Ki67+ cells increased in the outer fasciculata, whereas by 10 days, increased proliferation occurred in the outer and inner fasciculata. The key novel finding of increased proliferation in the inner fasciculata suggests that the delayed growth of the enucleated adrenal results in part from a regenerative response.  相似文献   

19.
Rotation of cytochrome P-450 was examined in bovine adrenocortical mitochondria before and after an enzymatic transformation of cholesterol into pregnenolone by cytochrome P-450scc in the presence of malate. Rotational diffusion was measured by observing the decay of absorption anisotropy, r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. Analysis of r(t) was based on a "rotation-about-membrane normal" model. The measurements were used to investigate substrate-dependent intermolecular interactions of cytochrome P-450 with other redox components. Rotational mobility of cytochrome P-450 was significantly dependent on the decrease in cholesterol content by side chain cleavage reaction catalyzed by cytochrome P-450scc. In a typical experiment, the observed value for the normalized time-independent anisotropy r(infinity)/r(0) was decreased from 0.78 in control mitochondria to 0.60 after conversion of 21% of cholesterol to pregnenolone, while no significant change was observed for the average rotational relaxation time phi of about 700 microseconds. Significantly high values of r(infinity)/r(0) = 0.78 and 0.60 imply co-existence of mobile and immobile populations of cytochrome P-450. Since we observed that the heme angle tilted 55 degrees from membrane plane, 22% (control mitochondria) and 40% (after conversion of cholesterol to pregnenolone) of cytochrome P-450 in mitochondria are calculated to be mobile in the preparation. The significant mobilization of cytochrome P-450scc molecules caused by the conversion of cholesterol to pregnenolone is likely due to changes in protein-protein interactions with its redox partners, since the lipid fluidity was kept unchanged by the cholesterol depletion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adrenal mitochondrial cytochrome P-450 which functions in cholesterol side chain cleavage (P-450scc) exhibited type I (lambdamax 385, lambdamin 420 nm) and inverse type I (lambdamin 385, lambdamax 420 nm) difference spectra with several steroids. The magnitude and type of response were dependent on the particular steroid and on the extent to which cholesterol was bound to the cytochrome in the intact mitochondrion. the inverse type I difference spectrum induced by 3beta-hydroxy-pregn-5-ene-20-one (pregnenolone) was dependent on the proportion of high spin cholesterol-cytochrome P-450scc complexes. With rat adrenal mitochondria cholest-5-ene-3beta, 20alpha-diol (20alpha-hydroxycholesterol) invariably induced a smaller inverse type I response and, under conditions where cytochrome P-450scc was nearly free of cholesterol, even produced a small type I response. Two distinct steroid binding sites on cytochrome P-450scc were detected by, respectively, the slow type I response to cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and the rapid type I response to a subsequent addition of cholest-5-ene-3beta, 20alpha, 22 R-triol (20alpha, 22R-dihydroxycholesterol). The relative proportions of the spectral responses to these steroids were dependent on the previous extent of adrenal activation by adrenocorticotropic hormone (ACTH), because this stimulatory process altered the combination of mitochondrial cholesterol with cytochrome P-450scc. It is proposed that the two steroid binding sites on cytochrome P-450scc interact with steroids in the following way: site I binds cholesterol, 25-hydroxycholesterol, and 20alpha, 22R-dihydroxycholesterol with formation of a partially high spin cytochrome; site II binds both pregnenolone and 20alpha-OH cholesterol resulting in a low spin cytochrome. Interactions between sites I and II are not competitive, and occupancy of site II ensures a low spin state irrespective of the occupancy of site I. A second mode of interaction by 20alpha, 22R-dihydroxycholesterol stabilizes a high spin cytochrome and is competitive with site II binding by 20alpha-hydroxycholesterol or pregnenolone. Formation of a maximally high spin cytochrome follows occupancy by 20alpha, 22R-dihydroxycholesterol at both sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号