首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron (Fe) is crucial for cellular proliferation, and Fe chelators have shown activity at preventing the growth of the malarial parasite in cell culture and in animal and human studies. We investigated the anti-malarial activity of novel aroylhydrazone and thiosemicarbazone Fe chelators that show high activity at inhibiting the growth of tumour cells in cell culture [Blood 100 (2002) 666]. Experiments with the chelators were performed using the chloroquine-sensitive, 3D7, and chloroquine-resistant, 7G8, strains of Plasmodium falciparum in vitro. The new ligands were significantly more active in both strains than the Fe chelator in widespread clinical use, desferrioxamine (DFO). The most effective chelators examined were 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone and 2-hydroxy-1-naphthylaldehyde-4-phenyl-3-thiosemicarbazone. The anti-malarial activity correlates with anti-proliferative activity against neoplastic cells demonstrated in a previous study. Our studies suggest that this class of lipophilic chelators may have potential as useful agents for the treatment of malaria.  相似文献   

2.
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important “Achilles' heel” for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a “double punch” mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine® and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial–mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the “expanding horizons” for iron chelators in selectively targeting cancer cells.  相似文献   

3.
Iron chelation therapy for the management of iron-overload disease is dominated by desferrioxamine (DFO). However, treatment using DFO is very arduous. Recently, novel Fe chelators of the pyridine-2-carboxaldehyde isonicotinoyl hydrazone (PCIH) class have shown high chelation efficacy and the potential to replace DFO. A critical consideration in the design of alternatives to DFO is that the chelator forms a redox-inert Fe complex. In the present study, the participation of Fe complexes in redox reactions has been investigated. Ascorbate oxidation in the presence of Fe(III) or benzoate hydroxylation in the presence of Fe(II) was not enhanced by the PCIH analogues. However, redox-induced DNA strand breaks were observed with these ligands under highly oxidizing conditions in the presence of Fe(II) and hydrogen peroxide. Experiments then examined the interactions of the PCIH analogues with DNA, and this was found to be weak. Considering this, we suggest that under extreme conditions seen in the DNA-strand break assay, weak DNA-binding may potentiate the redox activity of the PCIH analogues. However, importantly, in contrast to naked plasmid DNA, DNA damage by these chelators using intact human cells was not significant. Collectively, our results support the potential of the PCIH analogues for the treatment of Fe overload.  相似文献   

4.
Iron chelators have emerged as a potential anti-cancer treatment strategy. In this study, a series of novel thiosemicarbazone iron chelators containing a quinoline scaffold were synthesized and characterized. A number of analogs show markedly greater anti-cancer activity than the 'gold-standard' iron chelator, desferrioxamine. The anti-proliferative activity and iron chelation efficacy of several of these ligands (especially compound 1b), indicates that further investigation of this class of thiosemicarbazones is worthwhile.  相似文献   

5.
2-Pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) and di-2-pyridylketone isonicotinoyl hydrazone (HPKIH) are two Fe chelators with contrasting biological behavior. HPCIH is a well-tolerated Fe chelator with limited antiproliferative activity that has potential applications in the treatment of Fe-overload disease. In contrast, the structurally related HPKIH ligand possesses significant antiproliferative activity against cancer cells. The current work has focused on understanding the mechanisms of the Fe mobilization and antiproliferative activity of these hydrazone chelators by synthesizing new analogs (based on 2-acetylpyridine and 2-benzoylpyridine) that resemble both series and examining their Fe coordination and redox chemistry. The Fe mobilization activity of these compounds is strongly dependent on the hydrophobicity and solution isomeric form of the hydrazone (E or Z). Also, the antiproliferative activity of the hydrazone ligands was shown to be influenced by the redox properties of the Fe complexes. This indicated that toxic Fenton-derived free radicals are important for the antiproliferative activity for some hydrazone chelators. In fact, we show that any substitution of the H atom present at the imine C atom of the parent HPCIH analogs leads to an increase in antiproliferative efficacy owing to an increase in redox activity. These substituents may deactivate the imine R–C=N–Fe (R is Me, Ph, pyridyl) bond relative to when a H atom is present at this position preventing nucleophilic attack of hydroxide anion, leading to a reversible redox couple. This investigation describes novel structure–activity relationships of aroylhydrazone chelators that will be useful in designing new ligands or fine-tuning the activity of others. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Iron is a critical element for the survival of bacteria. We have designed and synthesized two novel 3-hydroxypyridin-4-one hexadentate ligands with high affinity for iron(III), which disrupt bacterial iron absorption. Biological studies demonstrate that these two chelators have significant inhibitory effect against both Gram-positive and Gram-negative bacteria, and therefore have potential as antimicrobial agents.  相似文献   

7.
The iron chelators desferrioxamine (DFO), 1,2-dimethyl(L1)-, 1-ethyl-2-methyl(L1NEt)- and 1-propyl-2-methyl(L1NPr)-3-hydroxypyrid-4-ones inhibited rat aortic prostacyclin (PGI2) synthesis in vitro (rank order of potency: DFO greater than L1 greater than L1NEt greater than L1NPr) when stimulated with adrenaline, arachidonate and the Ca2+ ionophore A23187. The inhibitory action of the chelators was blocked by Fe3+ and Al3+ and reversed by washing and H2O2, but not by ascorbate. These data suggest that iron chelators inhibit prostanoid synthesis in intact tissue through the removal or binding of Fe3+ linked to cyclo-oxygenase. These iron chelators may be of therapeutic value in the treatment of inflammatory and other diseases via two mechanisms: (1) the inhibition of pro-inflammatory prostanoid synthesis and (2) the inhibition of toxic-free-radical generation by cyclo-oxygenase.  相似文献   

8.
Ligands of the 2-pyridylcarbaldehyde isonicotinoylhydrazone class show high iron (Fe) sequestering efficacy and have potential as agents for the treatment of Fe overload disease. We have investigated the mechanisms responsible for their high activity. X-ray crystallography studies show that the tridentate chelate 2-pyridylcarbaldehyde isonicotinoylhydrazone undergoes an unexpected oxidation to isonicotinoyl(picolinoyl)hydrazine when complexed with FeIII. In contrast, in the absence of FeIII, the parent hydrazone is not oxidized in aerobic aqueous solution. To examine whether the diacylhydrazine could be responsible for the biological effects of 2-pyridylcarbaldehyde isonicotinoylhydrazone, their Fe chelation efficacy was compared. In contrast to its parent hydrazone, the diacylhydrazine showed little Fe chelation activity. Potentiometric titrations suggested that this might be because the diacylhydrazine was charged at physiological pH, hindering its access across membranes to intracellular Fe pools. In contrast, the Fe complex of this diacylhydrazine was charge neutral, which may allow facile movement through membranes. These data allow a model of Fe chelation for this compound to be proposed: the parent aroylhydrazone diffuses through cell membranes to bind Fe and is subsequently oxidized to the diacylhydrazine complex which then diffuses from the cell. Other diacylhydrazine analogues that were charge neutral at physiological pH demonstrated high Fe chelation efficacy. Thus, for this class of ligands, the charge of the chelator appears to be an important factor for determining their ability to access intracellular Fe. The results of this study are significant for understanding the biological activity of 2-pyridylcarbaldehyde isonicotinoylhydrazone and for the design of novel diacylhydrazine chelators for clinical use.  相似文献   

9.
Iron (Fe) is essential for cellular metabolism e.g., DNA synthesis and its depletion causes G1/S arrest and apoptosis. Considering this, Fe chelators have been shown to be effective anti-proliferative agents. In order to understand the anti-tumor activity of Fe chelators, the mechanisms responsible for G1/S arrest and apoptosis after Fe-depletion have been investigated. These studies reveal a multitude of cell cycle control molecules are regulated by Fe. These include p53, p27Kip1, cyclin D1 and cyclin-dependent kinase 2 (cdk2). Additionally, Fe-depletion up-regulates the mRNA levels of the cdk inhibitor, p21CIP1/WAF1, but paradoxically down-regulates its protein expression. This effect could contribute to the apoptosis observed after Fe-depletion. Iron-depletion also leads to proteasomal degradation of p21CIP1/WAF1 and cyclin D1 via an ubiquitin-independent pathway. This is in contrast to the mechanism in Fe-replete cells, where it occurs by ubiquitin-dependent proteasomal degradation. Up-regulation of p38 mitogen-activated protein kinase (MAPK) after Fe-depletion suggests another facet of cell cycle regulation responsible for inhibition of proliferation and apoptosis induction. Elucidation of the complex effects of Fe-depletion on the expression of cell cycle control molecules remains at its infancy. However, these processes are important to dissect for complete understanding of Fe-deficiency and the development of chelators for cancer treatment.  相似文献   

10.
Friedreich's ataxia (FA) is a crippling neurodegenerative disease that is due to iron (Fe) overload within the mitochondrion. One therapeutic intervention may be the development of a chelator that could remove mitochondrial Fe. We have implemented the only well characterized model of mammalian mitochondrial Fe overload to examine the Fe chelation efficacy of novel chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) class. In this model we utilize reticulocytes treated with the haem synthesis inhibitor succinylacetone which results in mitochondrial Fe-loading. Our experiments demonstrate that in contrast to desferrioxamine, several of the PCIH analogues show very high activity at mobilizing (59)Fe from (59)Fe-loaded reticulocytes. Further studies on these ligands in animals are clearly warranted considering their potential to treat FA.  相似文献   

11.
Pyridoxal isonicotinoyl hydrazone and its analogs are orally effective Fe(III) chelators which show potential as drugs to treat iron overload disease. The present investigation describes the measurement of the partition coefficient of the apochelator and Fe(III) complex of 20 of these ligands. These measurements have been done to investigate the relationship between lipophilicity and the efficacy of iron chelation in rabbit reticulocytes loaded with non-heme 59Fe. The results demonstrate a linear relationship between the partition coefficient (P) of the apochelator and its Fe(III) complex, and a simple equation has been derived relating these two parameters. Experimental data in the literature are in agreement with the equation. The relationship of the partition coefficients of the iron chelators and of their Fe(III) complexes to the effectiveness of the ligands in mobilizing iron in vitro and in vivo is also discussed.  相似文献   

12.
The therapeutic effect of iron (Fe) chelators on the potentially toxic plasma pool of nontransferrin-bound iron (NTBI), often present in Fe overload diseases and in some cancer patients during chemotherapy, is of considerable interest. In the present investigation, several multidentate pyridinones were synthesized and compared with their bidentate analogue, deferiprone (DFP; L1, orally active) and desferrioxamine (DFO; hexadentate; orally inactive) for their effect on the metabolism of NTBI in the rat hepatocyte and a hepatoma cell line (McArdle 7777, Q7). Hepatoma cells took up much less NTBI than the hepatocytes (< 10%). All the chelators inhibited NTBI uptake (80-98%) much more than they increased mobilization of Fe from cells prelabelled with NTBI (5-20%). The hexadentate pyridinone, N,N,N-tris(3-hydroxy-1-methyl-2(1H)-pyridinone-4-carboxaminoethyl)amine showed comparable activity to DFO and DFP. There was no apparent correlation between Fe status, Fe uptake and chelator activity in hepatocytes, suggesting that NTBI transport is not regulated by cellular Fe levels. The intracellular distribution of iron taken up as NTBI changed in the presence of chelators suggesting that the chelators may act intracellularly as well as at the cell membrane. In conclusion (a) rat hepatocytes have a much greater capacity to take up NTBI than the rat hepatoma cell line (Q7), (b) all chelators bind NTBI much more effectively during the uptake phase than in the mobilization of Fe which has been stored from NTBI and (c) while DFP is the most active chelator, other multidentate pyridinones have potential in the treatment of Fe overload, particularly at lower, more readily clinically available concentrations, and during cancer chemotherapy, by removing plasma NTBI.  相似文献   

13.
The interest in synthetic siderophore mimics includes therapeutic applications (iron chelation therapy), the design of more effective agents to deliver Fe to plants and the development of new chemical tools in order to study iron metabolism and iron assimilation processes in living systems. The design of ligands needs a rational approach for the understanding of the metal ion complexing abilities. The octahedral arrangement of donor atoms is the most favourable geometry, allowing the maximum possible distance between their formal or partial negative charges. Hexadentate chelators, usually of the tris-bidentate type, can accommodate the metal coordination sphere and are well-suited to obtain high pFe values. The first part of this review is dedicated to selected synthetic routes, taking into account (i) the nature of the chelating subunits, connecting groups and spacers, (ii) the water-solubility and hydrophilic/lipophilic balance, (iii) the chirality and (iv) the possibility of grafting probes or vectors. In the second part, we discuss the role of the molecular design on complexing abilities (thermodynamics and kinetics). The bidentate 8-hydroxyquinoline moiety offers an alternative to the usual coordinating hydroxamic acids, catechols and/or α-hydroxycarboxylic acids groups encountered in natural siderophores. The promizing results obtained with the tris-hydroxyquinoline-based ligand O-TRENSOX are summarized. O-TRENSOX exhibits a high and selective affinity for Fe(III) complexation. Its efficiency in delivering Fe to plants, iron mobilization, cell protection, and antiproliferative effects has been evidenced. Other chelators derived from O-TRENSOX (mixed catechol/8-hydroxyquinoline ligands, lipophilic ligands) are also described. Some results question the relevance of partition coefficients to foresee the activity of iron chelators. The development of probes (fluorescent, radioactive, spin labelled) based on the O-TRENSOX backbone is in progress in order to get insights in the complicated iron metabolism processes.  相似文献   

14.
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Abbreviations DFO desferrioxamine - HPKIH di-2-pyridyl ketone isonicotinoyl hydrazone - HNIH 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone - HPCIH 2-pyridinecarbaldehyde isonicotinoyl hydrazone - HPIH pyridoxal isonicotinoyl hydrazone - L linear DNA - OC open circular DNA - SC supercoiled DNA  相似文献   

15.
The plant availability of Fe from synthetic chelates has not been examined extensively for plants having the second strategy in iron uptake. Since these plants also excrete chelating agents, competition between natural and synthetic ligands is expected. This research was conducted to study the efficiency of different iron-chelates (Fe-EDTA, Fe-DTPA, Fe-EDDHA and a commercial product, Rexene) inLolium multiflorum iron nutrition. Plants were grown in a greenhouse with hydroponic culture using a buffered nutrient solution at pH 8. Initial iron concentration in the nutrient solution was near 0.5 mgl–1 and solutions were replaced weekly. In an other Fe-EDTA treatment the same amount of chelate was supplied by four additions during each week.Changes of iron concentration in the nutrient solution, harvestable yield, Fe, Mn, Cu and Zn content in plant tissue and chlorophylllevels in leaves are discussed as parameters to evaluate chelate efficacy. Fe-EDDHA, without inorganic iron in the medium was not as effective as the commercial product Rexene, containing Fe-EDDHA and some extra weakly complex iron, which gave the highest yields. Fe-EDTA applied once a week with fresh nutrient solution was less effective than a four part addition as seen from Chl1/[Fe] ratios.  相似文献   

16.
Oxidation reactions represent an important degradation pathway of nucleic acid-based pharmaceuticals. To evaluate the role of metal contamination and chelating agents in the formation of reactive oxygen species (ROS) during lyophilization, ROS generation and the stability of lipid/DNA complexes were investigated. Trehalose-containing formulations were lyophilized with different levels of transition metals. ROS generation was examined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Results show that ROS were generated during lyophilization, and both supercoil content and transfection rates decreased as the levels of metal-induced ROS increased. The experiments incorporating chelators demonstrated that some of these agents (e.g., DTPA, desferal) clearly suppress ROS generation, while others (e.g., EDTA) enhance ROS. Surprisingly, there was not a strong correlation of ROS generated in the presence of chelators with the maintenance of supercoil content. In this study, we demonstrated the adverse effects of the presence of metals (especially Fe(2+)) in nonviral vector formulations. While some chelators attenuate ROS generation and preserve DNA integrity, the effects of these additives on vector stability during lyophilization are difficult to predict. Further study is needed to develop potent formulation strategies that inhibit ROS generation and DNA degradation during lyophilization and storage.  相似文献   

17.
The chelating agent pyridoxal isonicotinoyl hydrazone (PIH) has recently been shown to mobilize 59Fe from reticulocytes loaded with non-heme 59Fe. In this study, various chelating agents were tested for their ability to effect the mobilization of iron from reticulocytes by PIH. They fall into several groups. The largest group includes chelators such as citrate, ethylenediaminetetracetic acid and desferrioxamine, which fail to affect PIH-induced iron mobilization and do not mobilize iron per se. Either these chelators do not enter reticulocytes or they do not take up iron from PIH-Fe complexes. The second group includes chelators such as 2,2′-bipyridine, 1,10-phenanthroline, bathophenanthroline sulfonate and N,N′-ethylenebis(o-hydroxyphenylglycine) which inhibit PIH-induced iron mobilization from reticulocytes and, when added together with PIH, induce radioiron accumulation in an alcohol-soluble fraction of reticulocytes. It appears that these chelators enter the cell and compete with PIH for 59Fe(II), but having bound iron are unable to cross the cell membrane. Spectral analysis suggests that Fe(II) chelators such as 2,2′-bipyridine and 1,10-phenanthroline remove iron from Fe(II)PIH but are not able to do so from Fe(III)PIH. Then there are compounds such as 2,3-dihydroxybenzoic acid and catechol which potentiate PIH-induced iron mobilization although they are unable to mobilize iron from reticulocytes by themselves. Lastly, there is a group of miscellaneous compounds which include chelators that either potentiate the iron-mobilizing effect of PIH as well as mobilizing iron from reticulocytes by themselves (tropolone), or that reduce PIH-induced iron mobilization while themselves having an iron-mobilizing effect (N,N′-bis(2,3-dihydroxybenzoyl)-1,6-diaminohexane). In further experiments, heme was found to stimulate globin synthesis in reticulocytes, the heme synthesis of which was inhibited by PIH, suggesting that PIH is probably not toxic to the cells.  相似文献   

18.

Background

Iron (Fe) deficiency in crops is a worldwide agricultural problem. Plants have evolved several strategies to enhance Fe acquisition, but increasing evidence has shown that the intrinsic plant-based strategies alone are insufficient to avoid Fe deficiency in Fe-limited soils. Soil micro-organisms also play a critical role in plant Fe acquisition; however, the mechanisms behind their promotion of Fe acquisition remain largely unknown.

Scope

This review focuses on the possible mechanisms underlying the promotion of plant Fe acquisition by soil micro-organisms.

Conclusions

Fe-deficiency-induced root exudates alter the microbial community in the rhizosphere by modifying the physicochemical properties of soil, and/or by their antimicrobial and/or growth-promoting effects. The altered microbial community may in turn benefit plant Fe acquisition via production of siderophores and protons, both of which improve Fe bioavailability in soil, and via hormone generation that triggers the enhancement of Fe uptake capacity in plants. In addition, symbiotic interactions between micro-organisms and host plants could also enhance plant Fe acquisition, possibly including: rhizobium nodulation enhancing plant Fe uptake capacity and mycorrhizal fungal infection enhancing root length and the nutrient acquisition area of the root system, as well as increasing the production of Fe3+ chelators and protons.  相似文献   

19.
Iron (Fe) is an obligate requirement for life and it is well known that Fe depletion leads to G(1)/S arrest and apoptosis. These facts, together with studies showing that Fe chelators can inhibit the growth of aggressive tumours such as neuroblastoma, suggest that Fe-deprivation may be an important therapeutic strategy. To optimise the anti-proliferative effects of Fe chelators, the role of Fe in cell cycle control requires intense investigation. For many years, Fe chelators were known to prevent the activity of the R2 subunit of ribonucleotide reductase (RR) that catalyzes the conversion of ribonucleotides into deoxyribonucleotides (dNTPs) for DNA synthesis. In addition, Fe depletion may also inhibit the newly identified p53-inducible form of this molecule called p53R2. This protein has the same Fe-binding sites as found in R2, and its activity is thought to supply dNTPs for the critical process of DNA repair. Iron chelation also causes hypophosphorylation of the retinoblastoma protein (pRb) and decreases the expression of cyclins A, B and D, which are vital for cell cycle progression. Other regulatory molecules whose expression is affected by Fe depletion include p53 and hypoxia inducible factor-1alpha (HIF-1alpha). The levels of p53 increase following Fe chelation via the ability of HIF-1alpha to bind and stabilize p53. The activity of HIF-1alpha is controlled by an Fe-dependent enzyme known as HIF-alpha prolyl hydroxylase (PH). Chelation of Fe from this enzyme inhibits its activity, leading to stabilization of HIF-1alpha and the subsequent effects on downstream targets critical for angiogenesis and tumour growth. The levels of p53 may also increase after Fe chelation by phosphorylation of this protein at serine-15 and -37. This prevents the interaction of p53 with murine double minute-2 (mdm-2) and its degradation. Iron chelation also markedly increases the mRNA levels of the p53-inducible cyclin-dependent kinase (cdk) inhibitor, p21(WAF1/CIP1). Surprisingly, the increase in p21(WAF1/CIP1) mRNA was not reciprocated at the protein level, and this may result in cell cycle dysregulation. This review will focus on the molecular mechanisms induced following Fe chelation and the role of Fe in cell cycle progression.  相似文献   

20.
Generation of the reactive oxygen species (ROS) in skin by exposure to ultraviolet (UV) radiation induces a number of cutaneous pathologies such as skin cancer, photosensitization, and photoaging among others. Skin iron catalyzes UV generation of ROS. Topical application of iron chelators reduces erythema, epidermal and dermal hypertrophy, wrinkle formation, tumour appearance. It has been proposed that iron chelators can be useful agents against damaging effects of both short- and long-term UV exposure. A better understanding of the action mechanisms of iron chelators, might be useful to developing effective anticancer and antiphotoaging cosmetic products. Iron chelators may lead to accumulation of protoporphyrin IX (PpIX), a strong photosensitizer. The action of iron chelators in skin, related to PpIX increase has not yet been thoroughly studied. Therefore, we have investigated the formation of PpIX in normal mouse skin after topical application of creams containing metal chelators. The amount and distribution of porphyrins formed was determined by means of non-invasive fluorescence spectroscopy. Deferoxamine (DF), ethylenediaminetetraacetic acid (EDTA), 1,2-diethyl-3-hydroxypyridin-4-one (CP94), but not meso-2,3-dimercaptosuccinic acid (DMSA), caused increased accumulation of endogenous porphyrins in the skin. Fluorescence excitation and emission spectroscopy confirmed that PpIX was the main fluorescent species. The amount of PpIX accumulated in skin under the present conditions was not large enough to produce any significant erythema after light exposure. Further studies are needed to evaluate the role of PpIX induced by iron chelators used, against photoaging and cancer prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号