首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《BBA》2020,1861(8):148202
Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.  相似文献   

2.
Assembly of the oxidative phosphorylation (OXPHOS) system in the mitochondrial inner membrane is an intricate process in which many factors must interact. The OXPHOS system is composed of four respiratory chain complexes, which are responsible for electron transport and generation of the proton gradient in the mitochondrial intermembrane space, and of the ATP synthase that uses this proton gradient to produce ATP. Mitochondrial human disorders are caused by dysfunction of the OXPHOS system, and many of them are associated with altered assembly of one or more components of the OXPHOS system. The study of assembly defects in patients has been useful in unraveling and/or gaining a complete understanding of the processes by which these large multimeric complexes are formed. We review here current knowledge of the biogenesis of OXPHOS complexes based on investigation of the corresponding disorders.  相似文献   

3.
Blue native (BN) gel electrophoresis is a powerful method for protein separation. Combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), it enables large scale identification of protein complexes and their subunits. Current BN-MS approaches, however, are limited in size resolution, comprehensiveness, and quantification. Here, we present a new methodology combining defined sub-millimeter slicing of BN gels by a cryo-microtome with high performance LC-MS/MS and label-free quantification of protein amounts. Application of this cryo-slicing BN-MS approach to mitochondria from rat brain demonstrated a high degree of comprehensiveness, accuracy, and size resolution. The technique provided abundance-mass profiles for 774 mitochondrial proteins, including all canonical subunits of the oxidative respiratory chain assembled into 13 distinct (super-)complexes. Moreover, the data revealed COX7R as a constitutive subunit of distinct super-complexes and identified novel assemblies of voltage-dependent anion channels/porins and TOM proteins. Together, cryo-slicing BN-MS enables quantitative profiling of complexomes with resolution close to the limits of native gel electrophoresis.Blue native (BN)1-PAGE and its colorless variant, colorless native PAGE, were originally developed by Schägger and co-workers as end point separation methods for characterization of solubilized mitochondrial membrane protein (super-)complexes under close-to-native conditions (13). Subsequently, native gel electrophoresis became the method of choice for first dimension separation followed by second dimension SDS-PAGE in two-dimensional gel-based proteomic analyses (2D-BN) of membrane protein complexes. After staining of the gel-separated proteins, protein spots are individually analyzed by different mass spectrometric methods, and the identified proteins were assigned to complexes based on their co-migration pattern (2D-BN-MS (4)). However, these 2D-BN-MS approaches exhibit the following severe shortcomings: (i) they are critically dependent on the staining properties of individual proteins; (ii) the size resolution of protein complexes is low; and (iii) the assignment of identified proteins to spots and complexes may be ambiguous. Therefore, application of 2D-BN-MS has remained largely restricted to the characterization of highly abundant and well defined membrane protein complexes such as complexes I–V of the respiratory chain in mitochondria (57), photosynthetic complexes (810), or viruses (11).In a first attempt to overcome these shortcomings of 2D-BN-MS, Wessels et al. (12) coupled BN-PAGE separation more directly to MS analysis by manually cutting the gel lane into 24 slices/sections of about 2 mm width that were separately digested and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Their study on HEK cell mitochondria identified 59 of the 90 canonical subunits of the oxidative respiratory chain (OXPHOS) complexes I–V. The respective protein abundance profiles (based on standard label-free quantification) showed clustering of their peak maxima into the expected complexes I–V. Since then, this one-dimensional BN-MS methodology has been gradually improved with respect to quality of the native gel separation, LC-MS/MS sensitivity, and robustness of the quantitative evaluation. Thus, two recent studies on human mitochondrial preparations (each analyzing two BN separations in 60 and 24 slices, respectively) reported identification and hierarchical profile clustering of 464 (13) and 437 (14) mitochondrial proteins. In these studies, 82/73 (including 8 single-peptide hits) and 55/54 (including 7 single-peptide hits) of the 90 known OXPHOS complex subunits were identified/clustered, respectively. Furthermore, TMEM126B was identified as a novel and essential subunit of an OXPHOS complex I assembly complex (13).Notably, all of these studies achieved clustering of protein profiles for the dominating populations of complexes, although they largely failed to obtain information on sub-complexes and super-complexes, most likely as a consequence of the strong undersampling in the first dimension (well below the resolution of BN-PAGE) and a limited dynamic range of MS-based identification and quantification.To improve the resolution of BN-MS for analysis of protein super-complexes and their subunit composition, we have recently started to develop sub-millimeter sampling of BN gel lane sections by using cryo-microtome slicing (15, 16). Here, we describe a new methodology for comprehensive and high resolution complexome profiling that combines this high resolution gel sampling method with a sensitive and precise label-free MS quantification workflow. Protein profiles determined in a mammalian mitochondrial membrane preparation showed a highly effective mass resolution (<5% molecular weight difference) over the whole BN-PAGE separation range and together covered a major portion of the mitochondrial membrane proteome.  相似文献   

4.
Klodmann J  Lewejohann D  Braun HP 《Proteomics》2011,11(9):1834-1839
SDS normally is strictly avoided during Blue native (BN) PAGE because it leads to disassembly of protein complexes and unfolding of proteins. Here, we report a modified BN-PAGE procedure, which is based on low-SDS treatment of biological samples prior to native gel electrophoresis. Using mitochondrial OXPHOS complexes from Arabidopsis as a model system, low SDS concentrations are shown to partially dissect protein complexes in a very defined and reproducible way. If combined with 2-D BN/SDS-PAGE, generated subcomplexes and their subunits can be systematically investigated, allowing insights into the internal architecture of protein complexes. Furthermore, a 3-D BN/low-SDS BN/SDS-PAGE system is introduced to facilitate structural analysis of individual protein complexes without their previous purification.  相似文献   

5.
The organization of the oxidative phosphorylation (OXPHOS) system within the inner mitochondrial membrane appears to be far more complicated than previously thought. In particular, the individual protein complexes of the OXPHOS system (complexes I to V) were found to specifically interact forming defined supramolecular structures. Blue-native polyacrylamide gel electrophoresis and single particle electron microscopy proved to be especially valuable in studying the so-called "respiratory supercomplexes". Based on these procedures, increasing evidence was presented supporting a "solid state" organization of the OXPHOS system. Here, we summarize results on the formation, organisation and function of the various types of mitochondrial OXPHOS supercomplexes.  相似文献   

6.
Oxidative phosphorylation (OXPHOS) in mitochondria takes place at the inner membrane, which folds into numerous cristae. The stability of cristae depends, among other things, on the mitochondrial intermembrane space bridging complex. Its components include inner mitochondrial membrane protein mitofilin and outer membrane protein Sam50. We identified a conserved, uncharacterized protein, C1orf163 [SEL1 repeat containing 1 protein (SELRC1)], as one of the proteins significantly reduced after the knockdown of Sam50 and mitofilin. We show that C1orf163 is a mitochondrial soluble intermembrane space protein. Sam50 depletion affects moderately the import and assembly of C1orf163 into two protein complexes of approximately 60 kDa and 150 kDa. We observe that the knockdown of C1orf163 leads to reduction of levels of proteins belonging to the OXPHOS complexes. The activity of complexes I and IV is reduced in C1orf163-depleted cells, and we observe the strongest defects in the assembly of complex IV. Therefore, we propose C1orf163 to be a novel factor important for the assembly of respiratory chain complexes in human mitochondria and suggest to name it RESA1 (for RESpiratory chain Assembly 1).  相似文献   

7.
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.Cancer cells favor glycolysis over oxidative phosphorylation (OXPHOS) to meet their energy demand,1 suggesting that they have adapted to survive and proliferate in the absence of fully functional mitochondria. Research in the last two decades demonstrates that, in addition to generation of energy, mitochondria including cancer cell mitochondria regulate multiple cellular signaling pathways encompassing cell death, proliferation, cellular redox balance, and metabolism.2, 3 As cancer cells possess defects in these pathways that provide an opportunity to target this organelle for therapeutic purposes. Subsequently, several agents have been developed that target cancer cell mitochondria to induce apoptosis, a cell death pathway, and eradicate cancer cells.4, 5 Cancer cell mitochondria harbor several proapoptotic proteins including cytochrome c, which is released from mitochondria in response to anticancer agents and activates caspases to execute apoptosis.5, 6 Thus, anticancer agents that induce cytochrome c release from mitochondria will be beneficial for induction of apoptosis in cancer cells. Indeed, several such agents have been developed, which include inhibitors targeting prosurvival Bcl-2 family members including Bcl-2, Bcl-xL, and Mcl-1.7, 8, 9 Unfortunately, cancer cells have developed multiple mechanisms to resist or overcome cytochrome c release and evade apoptosis.Although underlying mechanisms of cancer cell resistance to apoptosis are still undefined, the OXPHOS defect is known to be one of the key reasons for the attenuation of apoptosis in cancer cells.10, 11 Multiple lines of evidence support the notion that cancer cell survival and proliferation commonly associate with an OXPHOS defect in cancer.1, 12 Active OXPHOS is an efficient form of respiration but also regulates apoptosis through the OXPHOS complexes. The OXPHOS system consists of five multimeric protein complexes (I, II, III, IV, and V). The components of these complexes (except complex-II) are encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA).12, 13 Thus mutations, deletions, and translocations in either mtDNA or nDNA can potentially result in OXPHOS deficiency. MtDNA mutations associate with inhibition of apoptosis, induction of angiogenesis, invasion and metastasis of various types of cancer.3, 12, 14 Thus, mtDNA could potentially be an important target to restore cell death in cancer and attenuate cancer growth. Therefore, there is an urgent need to investigate the role of OXPHOS in the molecular mechanisms underlying cancer cell death.We investigated the effects of several anticancer agents of different classes including DNA-damaging agents (etoposide and doxorubicin), protein kinase inhibitors (staurosporine and sorafenib), mitotic inhibitor (taxol), ER stressor/inhibitor of Ca2+-ATPases (thapsigargin), and histone deacetylase (HDAC) inhibitor (apicidin) on mtDNA. We also determined the impact of OXPHOS defects on apoptosis induction by these agents. Although most anticancer agents induced caspase activation and apoptosis, the mtDNA level was elevated maximally by etoposide and it was not modulated by a caspase inhibitor but reduced by an autophagy inhibitor. Induction of mtDNA is associated with increased reactive oxygen species (ROS) production and elevated mitochondrial mass. Pharmacologic inhibition of OXPHOS complexes reduced the etoposide-induced elevation in mtDNA, suggesting the involvement of these complexes in etoposide-induced apoptosis. Together, we define the impact of mtDNA and OXPHOS function on mitochondrial apoptosis, which has significance in restoring cancer cell apoptosis for therapeutic purposes.  相似文献   

8.
Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP.  相似文献   

9.
Virus assembly occurs in a complex environment and is dependent upon viral and cellular components being properly correlated in time and space. The simplicity of the flock house virus (FHV) capsid and the extensive structural, biochemical and genetic characterization of the virus make it an excellent system for studying in vivo virus assembly. The tetracysteine motif (CCPGCC), that induces fluorescence in bound biarsenical compounds (FlAsH and ReAsH), was genetically inserted in the coat protein, to visualize this gene product during virus infection. The small size of this modification when compared to those made by traditional fluorescent proteins minimizes disruption of the coat proteins numerous functions. ReAsH not only fluoresces when bound to the tetracysteine motif but also allows correlated electron microscopy (EM) of the same cell following photoconversion and osmium staining. These studies demonstrated that the coat protein was concentrated in discrete patches in the cell. High pressure freezing (HPF) followed by freeze substitution (FS) of infected cells showed that these patches were formed by virus particles in crystalline arrays. EM tomography (EMT) of the HPF/FS prepared samples showed that these arrays were proximal to highly modified mitochondria previously established to be the site of RNA replication. Two features of the mitochondrial modification are 60 nm spherules that line the outer membrane and the large chamber created by the convolution induced in the entire organelle.  相似文献   

10.
The final steps in the production of adenosine triphosphate (ATP) in mitochondria are executed by a series of multisubunit complexes and electron carriers, which together constitute the oxidative phosphorylation (OXPHOS) system. OXPHOS is under dual genetic control, with communication between the nuclear and mitochondrial genomes essential for optimal assembly and function of the system. We describe the current understanding of the metabolic consequences of pathological OXPHOS defects, based on analyses of patients and of genetically engineered model systems. Understanding the metabolic consequences of OXPHOS disease is of key importance for elucidating pathogenic mechanisms, guiding diagnosis and developing therapies.  相似文献   

11.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   

12.
Moslemi AR  Darin N 《Mitochondrion》2007,7(4):241-252
Mitochondrial OXPHOS disorders are caused by mutations in mitochondrial or nuclear genes, which directly or indirectly affect mitochondrial oxidative phosphorylation (OXPHOS). Primary mtDNA abnormalities in children are due to rearrangements (deletions or duplications) and point mutations or insertions. Mutations in the nuclear-encoded polypeptide subunits of OXPHOS result in complex I and II deficiency, whereas mutations in the nuclear proteins involved in the assembly of OXPHOS subunits cause defects in complexes I, III, IV, and V. Here, we review recent progress in the identification of mitochondrial and nuclear gene defects and the associated clinical manifestations of these disorders in childhood.  相似文献   

13.
Mitochondria are central to cellular metabolism and energy conversion. In plants they also enable photosynthesis through additional components and functional flexibility. A majority of those processes relies on the assembly of individual proteins to larger protein complexes, some of which operate as large molecular machines. There has been a strong interest in the makeup and function of mitochondrial protein complexes and protein–protein interactions in plants, but the experimental approaches used typically suffer from selectivity or bias. Here, we present a complexome profiling analysis for leaf mitochondria of the model plant Arabidopsis thaliana for the systematic characterization of protein assemblies. Purified organelle extracts were separated by 1D Blue native (BN) PAGE, a resulting gel lane was dissected into 70 slices (complexome fractions) and proteins in each slice were identified by label free quantitative shot‐gun proteomics. Overall, 1359 unique proteins were identified, which were, on average, present in 17 complexome fractions each. Quantitative profiles of proteins along the BN gel lane were aligned by similarity, allowing us to visualize protein assemblies. The data allow re‐annotating the subunit compositions of OXPHOS complexes, identifying assembly intermediates of OXPHOS complexes and assemblies of alternative respiratory oxidoreductases. Several protein complexes were discovered that have not yet been reported in plants, such as a 530 kDa Tat complex, 460 and 1000 kDa SAM complexes, a calcium ion uniporter complex (150 kDa) and several PPR protein complexes. We have set up a tailored online resource ( https://complexomemap.de/at_mito_leaves ) to deposit the data and to allow straightforward access and custom data analyses.  相似文献   

14.

Background

Energy deficiency and mitochondrial failure have been recognized as a prominent, early event in Alzheimer''s disease (AD). Recently, we demonstrated that chronic exposure to amyloid-beta (Aβ) in human neuroblastoma cells over-expressing human wild-type amyloid precursor protein (APP) resulted in (i) activity changes of complexes III and IV of the oxidative phosphorylation system (OXPHOS) and in (ii) a drop of ATP levels which may finally instigate loss of synapses and neuronal cell death in AD. Therefore, the aim of the present study was to investigate whether standardized Ginkgo biloba extract LI 1370 (GBE) is able to rescue Aβ-induced defects in energy metabolism.

Methodology/Principal Findings

We used a high-resolution respiratory protocol to evaluate OXPHOS respiratory capacity under physiological condition in control (stably transfected with the empty vector) and APP cells after treatment with GBE. In addition, oxygen consumption of isolated mitochondria, activities of mitochondrial respiratory enzymes, ATP and reactive oxygen species (ROS) levels as well as mitochondrial membrane mass and mitochondrial DNA content were determined. We observed a general antioxidant effect of GBE leading to an increase of the coupling state of mitochondria as well as energy homeostasis and a reduction of ROS levels in control cells and in APP cells. GBE effect on OXPHOS was even preserved in mitochondria after isolation from treated cells. Moreover, these functional data were paralleled by an up-regulation of mitochondrial DNA. Improvement of the OXPHOS efficiency was stronger in APP cells than in control cells. In APP cells, the GBE-induced amelioration of oxygen consumption most likely arose from the modulation and respective normalization of the Aβ-induced disturbance in the activity of mitochondrial complexes III and IV restoring impaired ATP levels possibly through decreasing Aβ and oxidative stress level.

Conclusions/Significance

Although the underlying molecular mechanisms of the mode of action of GBE remain to be determined, our study clearly highlights the beneficial effect of GBE on the cellular OXPHOS performance and restoration of Aβ-induced mitochondrial dysfunction.  相似文献   

15.
16.
The production of in vitro and in vivo models of mitochondrial DNA (mtDNA) defects is currently limited by a lack of characterized mouse cell mtDNA mutants that may be expected to model human mitochondrial diseases. Here we describe the creation of transmitochondrial mouse (Mus musculus) cells repopulated with mtDNA from different murid species (xenomitochondrial cybrids). The closely related Mus spretus mtDNA is readily maintained when introduced into M. musculus mtDNA-less (rho(0)) cells, and the resulting cybrids have normal oxidative phosphorylation (OXPHOS). When the more distantly related Rattus norvegicus mtDNA is transferred to the mouse nuclear background the mtDNA is replicated, transcribed, and translated efficiently. However, function of several OXPHOS complexes that depend on the coordinated assembly of nuclear and mtDNA-encoded proteins is impaired. Complex I activity in the Rattus xenocybrid was 46% of the control mean; complex III was 37%, and complex IV was 78%. These defects combined to restrict maximal respiration to 12-31% of the control and M. spretus xenocybrids, as measured polarographically using isolated cybrid mitochondria. These defects are distinct to those previously reported for human/primate xenocybrids. It should be possible to produce other mouse xenocybrid constructs with less severe OXPHOS phenotypes, to model human mtDNA diseases.  相似文献   

17.
Human mitochondrial complex I assembly: a dynamic and versatile process   总被引:3,自引:0,他引:3  
One can but admire the intricate way in which biomolecular structures are formed and cooperate to allow proper cellular function. A prominent example of such intricacy is the assembly of the five inner membrane embedded enzymatic complexes of the mitochondrial oxidative phosphorylation (OXPHOS) system, which involves the stepwise combination of >80 subunits and prosthetic groups encoded by both the mitochondrial and nuclear genomes. This review will focus on the assembly of the most complicated OXPHOS structure: complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). Recent studies into complex I assembly in human cells have resulted in several models elucidating a thus far enigmatic process. In this review, special attention will be given to the overlap between the various assembly models proposed in different organisms. Complex I being a complicated structure, its assembly must be prone to some form of coordination. This is where chaperone proteins come into play, some of which may relate complex I assembly to processes such as apoptosis and even immunity.  相似文献   

18.
Rutger O. Vogel  Leo G.J. Nijtmans 《BBA》2007,1767(10):1215-1227
One can but admire the intricate way in which biomolecular structures are formed and cooperate to allow proper cellular function. A prominent example of such intricacy is the assembly of the five inner membrane embedded enzymatic complexes of the mitochondrial oxidative phosphorylation (OXPHOS) system, which involves the stepwise combination of > 80 subunits and prosthetic groups encoded by both the mitochondrial and nuclear genomes. This review will focus on the assembly of the most complicated OXPHOS structure: complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). Recent studies into complex I assembly in human cells have resulted in several models elucidating a thus far enigmatic process. In this review, special attention will be given to the overlap between the various assembly models proposed in different organisms. Complex I being a complicated structure, its assembly must be prone to some form of coordination. This is where chaperone proteins come into play, some of which may relate complex I assembly to processes such as apoptosis and even immunity.  相似文献   

19.

Background

In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G) in the cytochrome b (MT-CYB) gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities.

Methodology

Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis.

Principal Findings

Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient''s skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband''s mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background.

Conclusions

Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders.  相似文献   

20.
Polyelectrolyte complexes (PECs) of alginate and chitosan were formed by addition of 0.1% alginate solution (pH 6.5) to 0.1% chitosan solution (pH 4.0), and by adding the chitosan solution to the alginate solution under high shearing conditions. Variations in the properties of the polymers and the preparation procedure were studied, and the resultant PEC size, zeta potential (Zp), and pH were determined using dynamic light scattering (DLS), electrophoresis and by measuring turbidity and pH. Tapping mode atomic force microscopy (AFM) was used to examine some of the complexes. The particle size was decreased as the speed and diameter of the dispersing element of the homogenizer was increased. The net charge ratio between chitosan and alginate, and the molecular weights (MW) of both the alginate and chitosan samples were the most significant parameters that influenced the particle size, Zp, and pH. The mixing order also influenced the size of the PECs, however, the Zp and pH were not affected by the mixing order. The stability of the complexes was investigated by incubation at an elevated temperature (37 °C), storage for one month at 4 °C, alteration of the pH of the PEC mixture, and addition of salt to physiological ionic strength (0.15 M NaCl). The properties of the PEC could be affected according to the molecular properties of the polyelectrolytes selected and the preparation procedures used. The resultant PEC sizes and properties of the complex were rationalised using a core-shell model for the structure of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号