首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and efficient system was developed for rapid somatic embryogenesis from leaf explants of Merwilla plumbea, a traditional but threatened medicinal plant in South Africa. Friable embryogenic callus (FEC) was obtained from leaf explants on embryogenic callus induction medium containing agar-solidified Murashige and Skoog (MS) salts and vitamins, 8.3 μM picloram, 2.3 μM thidiazuron (TDZ) and 20 μM glutamine. FEC was subsequently incubated in embryogenic callus proliferation medium containing 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.1 μM picloram for 7 days before it was transferred to liquid somatic embryo medium (SEML) containing MS medium supplemented with 0.4 μM picloram and 0.9 μM TDZ. In SEML supplemented with 150 mg L−1 haemoglobin, 5.4–35.6 somatic embryos per settled cell volume of 500 mg FEC were obtained. These embryos were at globular to cotyledonary developmental stages. Embryo maturation, germination and plant formation rate was 94.4% following transfer of SEs to half-strength MS medium supplemented with 1.4 μM gibberellic acid. Plantlets transferred into soil acclimatized in the misthouse and established successfully in the greenhouse (100%). This is the first report on induction of Merwilla plumbea somatic embryogenesis. The protocol developed offers controlled vegetative propagation by alleviating extinction threats, ensures germplasm conservation and provides a system for physiological, biochemical, molecular and cellular studies of embryo development.  相似文献   

2.
Summary Efficient shoot regeneration of sugarcane (Saccharum spp. hybrid cv. CP84-1198) from embryogenic callus cultures has been obtained using thidiazuron (TDZ). Callus was placed on modified Murashige and Skoog (MS) medium containing 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D), or 9.3 μM kinetin and 22.3 μM naphthaleneacetic acid (NAA) and compared with the same MS medium supplemented with 0.5, 1.0, 2.5, 5.0 or 10.0 μMTDZ, A11 TDZ treatments resulted in faster shoot regeneration than the kinetin/NAA treatment, and more shoot production than either the 2,4-D or kinetin/NAA treatments. Maximum response, as determined by total number of shoots (26 per explant) and number of shoots greater than 1 cm (4 per explant) 4 wk after initiation, was obtained with 1.0 μM TDZ. The shoots rooted efficiently on MS medium supplemented with 19.7 μM indole-3-butyric acid (IBA). These results indicate that TDZ effectively stimulates sugarcane plant regeneration from embryogenic callus, and may be suitable to use in genetic transformation studies to enhance regeneration of transgenic plants.  相似文献   

3.
Summary Media components used for three stages of development: (1) callus maintenance, (2) maturation of embryos, and (3) conversion of embryos to plants were shown to affect regeneration of plants for the commercially important red rose cultivar Kardinal. Embryogenic callus was maintained for 5yr on either Schenk and Hildebrandt’s basal salts medium (SH) supplemented with 13.6 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or Murashige and Skoog’s basal salts medium (MS) supplemented with 18.1 μM dicamba and 0.46 μM kinetin. Maturation of embryos was three times higher using callus maintained on the SH medium supplemented with 2,4-D while conversion of cotyledonary-stage embryos to plants was significantly higher (10 times) using callus that had been maintained on MS medium with dicamba and kinetin. Maximum maturation (13.5%), and conversion (15.2%), occurred when callus was cultured on MS maturation medium without hormones. Cotyledonary-stage embryos cultured on MS conversion medium supplemented with abscisic acid (5–20 μM) produced plants that survived at a significantly higher rate (two times) in the greenhouse than when embryos were cultured without abscisic acid. The highest rate of plant regeneration occurred when embryogenic callus of ‘Kardinal’ was maintained on MS medium supplemented with dicamba and kinetin, maturation of embryos occurred on MS maturation medium without hormones, and conversion of cotyledonary-stage embryos occurred on MS conversion medium supplemented with abscisic acid.  相似文献   

4.
Summary Callus of Phalaenopsis Nebula was induced from seed-derived protocorms on 1/2 Murashige and Skoog (MS) basal medium plus 0–1.0 mg l−1 (0–4.52 μM) N-phenyl-N′-1,2,3,-thiadiazol-5-yl urea (TDZ) and/or 0–10 mg l−1 (0–45.24 μ M) 2,4-dichlorophenoxyacetic acid (2,4-D). Protocorms 2 mo. old performed better than 1-mo.-old protocorms for callus induction. More calluses formed on 1/2 MS basal medium supplemented with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. These calluses could be maintained by subculturing every month with basal medium supplemented with 0.5 mg l−1 (2.27 μM) TDZ and 0.5 mg l−1 (2.26 μM) 2,4-D. Protocorm-like bodies were formed, and plants regenerated from these calluses on 1/2 MS basal medium alone or supplemented with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. Plantlets were then potted on sphagnum moss in the greenhouse and grew well. No chromosomal abnormalities were found among the root-tip samples of 21 of the regenerated plantlets that were successfully acclimatized.  相似文献   

5.
Summary Regeneration of plants via somatic embryogenesis was achieved from zygotic embryo explants isolated from mature seeds of Schisandra chinensis. Merkle and Sommer's medium, fortified with 2,4-dichlorophenoxyacetic acid (2,4-D; 9.04 μM) and zeatin (0.09 μM), was effective for induction of embryogenic callus. The development of a proembryogenic mass and somatic embryos occurred on Murashige and Skoog medium (MS) free of plant growth regulators. The embryogenic callus induced on Merkle and Sommer's medium supplemented with 2,4-D (9.04 μM) and zeatin (0.09 μM) showed development of the maximum number of somatic embryos when transferred to MS medium free of plant growth regulators. The maximum maturation and germination of cotyledonary somatic embryos (46.3%) occurred on MS medium supplemented with 2,4-D (0.45 μM) and N6-benzyladenine (1.11 μM). The somatic embryo-derived plants were successfully hardned, with a survival rate of approximately 67%, and established in the field.  相似文献   

6.
Summary In vitro propagation of Andrographis paniculata (Burm. f.) Wallich ex Nees through somatic embryogenesis, and influence of 2,4-dichlorophenoxyacetic acid (2,4-1) on induction, maturation, and conversion of somatic embryos were investigated. The concentration of 2,4-D in callus induction medium determined the induction, efficacy of somatic embryogenesis, embryo maturation, and conversion. Friable callus initiated from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 2.26, 4.52, 6.78, and 9.05μM 2,4-D started to form embryos at 135, 105, 150, and 185d, respectively, after explant establishment. Callus initiated at 13.56μM 2,4-D did not induce embryos even after 240 d, whereas those initiated on MS medium with 4.52μM 2,4-D was most favorable for the formation and maturation of somatic embryos. Callus subcultured on the medium with reduced concentration of 2,4-D (2.26μM) became embryogenic. This embryogenic callus gave rise to the highest number of embryos (mean of 312 embryos) after being transferred to half-strength MS basal liquid medium. The embryos were grown only up to the torpedo stage. A higher frequency of embryos developed from callus initiated on 2.26 or 4.52 μM 2,4-D underwent maturation compared to that initiated on higher concentrations of 2.4-D. The addition of 11.7μM silver nitrate to half-strength MS liquid medium resulted in 71% of embryos undergoing maturation, while 83% of embryos developed into plantlets after being transferred to agar inedium with 0.44 μMN6-benzyladenine and 1.44 μM gibberellic acid. Most plantlets (88%) survived under field conditions and were morphologically identical to the parent plant.  相似文献   

7.
Summary A protocol has been developed for high-frequency shoot regeneration and plant establishment of Tylophora indica from petiole-derived callus. Optimal callus was developed from petiole explants on Murashige and Skoog basal medium supplemented with 10μM2,4-dichlorophenoxyacetic acid +2,5μM thidiazuron (TDZ). Adventitious shoot induction was achieved from the surface of the callus after transferring onto shoot induction medium. The highest rate (90%) of shoot multiplication was achieved on MS medium containing 2.5μM TDZ. Individual elongated shoots were rooted best on halfstrength MS medium containing 0.5μM indole-3-butyric acid (IBA). When the basal cut ends of the in vitro-regenerated shoots were dipped in 150μM IBA for 30 min followed by transplantation in plastic pots containing sterile vermiculite, a mean of 4.1 roots per shoot developed. The in vitro-raised plantlets with well-developed shoot and roots were successfully established in earthen pots containing garden soil and grown in a greenhouse with 100% survival. Four months after transfer to pots, the performance of in vitro-propagated plants of T. indica was evaluated on the basis of selected physiological parameters and compared with ex vitro plants of the same age.  相似文献   

8.
Summary Procedures for callus induction and subsequent organogenesis in the aquatic plant, water chestnut (Trapa japonica Flerov), were established. Phenolics exuded from explants at the callus-induction stage adversely affect callus growth. For cotyledonary node-derived callus cultured in Murashige and Skoog (MS) medium (full, half or quarter strength) containing 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination with benzyladenine (BA), the accumulation of phenolics was reduced and callus induction increased by the addition of 10.8 μM phloroglucinol (PG) to the medium. Ascorbic acid was also effective in reducing phenolic accumulation, but less effective for callus induction than PG. Half-strength MS medium supplemented with 2.7 μM 2,4-D, 108.0 μM casein hydrolyzate, and 10.8 μM PG supported maximum callus induction. Plant organogenesis was increased by addition of vitamins (0.27 μM biotin and 2.7 μM folic acid) to half-strength MS medium supplemented with 0.27 μM BA. Many shoots developed from the regenerated nodal shoot explants in liquid half-strength MS salts medium supplemented with 1.08 μM BA and 0.27 μM naphthaleneacetic acid. Individual shoots were excised and cultured in liquid half-strength MS medium supplemented with 5.4 μM IBA and rooted plantlets (108) were transferred and acclimatized in plastic pots. After 3 wk, the plantlets were transplanted in a water chestnut field and the survival rate was 100%.  相似文献   

9.
Summary Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52μM2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.  相似文献   

10.
Summary High-frequency somatic embryogenesis and plant regeneration was achieved on callus derived from leaf (petiole and lamina) and internode explants of Centella asiatica L. Growth regulators significantly influenced the frequency of somatic embryogenesis and plant regeneration. Calluses developed on Murashige and Skoog (MS) medium fortified with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 5.37 μM α-naphthaleneacetic acid (NAA), both with 2.32 μM kinetin (Kn), were superior for somatic embryogenesis. Callus developed on NAA and Kn-supplemented medium favored induction and maturation of embryos earlier compared to that on 2,4-D and Kn. Embryogenic callus transferred from NAA and Kn-supplemented medium to suspension cultures of half-strength MS medium with NAA (2.69 μM) and Kn (1.16 μM) developed a mean of 204.3 somatic embryos per 100 mg of callus. Embryogenic callus transferred from 2,4-D and Kn subsequently to suspension cultures of half-strength MS medium with 2,4-D (0.45 μM) and Kn (1.16 μM) developed a mean of 303.1 embryos per 100 mg of callus. Eighty-eight percent of the embryos underwent maturation and conversion to plantlets upon transfer to half-strength MS semisolid medium having 0.054 μM NAA with either 0.044 μM BA or 0.046 μM Kn. Embryo-derived plantlets established in field conditions displayed morphological characters identical to those of the parent plant.  相似文献   

11.
Summary In vitro regeneration of plants via somatic embryogenesis through cell suspension culture was achieved in horsegram. Embryogenic calluses were induced on leaf segments on solid Murashige and Skoog (MS) medium with 9.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Differentiation of somatic embryos occurred when the embryogenic calluses were transferred to liquid MS medium containing 2,4-D. Maximum frequency (33.2%) of somatic embryos was observed on MS medium supplemented with 7.9 μM 2,4-D. Cotyledonary-torpedo-shaped embryos were transferred to liquid MS medium without growth regulators for maturation and germination. About 5% of the embryos germinated into plants, which grew further on solid MS medium. The plants were hardened and established in soil. Effects of various auxins, cytokinins, carbohydrates, amino acids, and other additives on induction and germination of somatic embryos were also studied. A medium supplemented with 7.9 μM 2,4-D, 3.0% sucrose, 40 mg l−1 L-glutamine, and 1.0 μM abscisic acid was effective to achieve a high frequency of somatic embryo induction, maturation, and further development.  相似文献   

12.
Plant regeneration through direct somatic embryogenesis in Aeschynanthus radicans ‘Mona Lisa’ was achieved in this study. Globular somatic embryos were formed directly from cut edges of leaf explants and cut ends or on the surface of stem explants 4 wk after culture on Murashige and Skoog (MS) medium supplemented with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA), TDZ with 2,4-dichlorophenoxyacetic acid (2,4-D), or 6-benzylaminopurine (BA) or kintin (KN) with 2,4-D. MS medium containing 9.08 μM TDZ and 2.68 μM 2,4-D resulted in 71% of stem explants producing somatic embryos. In contrast, 40% of leaf explants produced somatic embryos when induced in medium containing 6.81 μM TDZ and 2.68 μM 2,4-D. Somatic embryos matured, and some germinated into small plants on the initial induction medium. Up to 64% of stem explants cultured on medium supplemented with 9.08 μM TDZ + 2.68 μM 2,4-D, 36% of leaf explants cultured on medium containing 6.81 μM TDZ and 2.68 μM 2,4-D had somatic embryo germination before or after transferring onto MS medium containing 8.88 μM BA and 1.07 μM NAA. Shoots elongated better and roots developed well on MS medium without growth regulators. Approximately 30–50 plantlets were regenerated from each stem or leaf explant. The regenerated plants grew vigorously after transplanting to a soil-less substrate in a shaded greenhouse with more than a 98% survival rate. Three months after their establishment in the shaded greenhouse, 500 plants regenerated from stem explants were morphologically evaluated, from which five types of variants that had large, orbicular, elliptic, small, and lanceolate leaves were identified. Flow cytometry analysis of the variants along with the parent showed that they all had one identical peak, indicating that the variant lines, like the parent, were diploid. The mean nuclear DNA contents of the variant lines and their parent ranged from 4.90 to 4.99 pg 2C−1, which were not significantly different statistically. The results suggest that the regenerated plants have a stable ploidy level, and the regeneration method established in this study can be used for rapid propagation of ploidy-stable Aeschynanthus radicans.  相似文献   

13.
Summary Suspension culture of cucumber (Cucumis sativus L.) has been an inefficient method for production of somatic embryos owing to problems with embryo maturation and conversion. Embryogenic callus of cv. Green Long was induced on semisolid Murashige and Skoog (MS) medium containing 6.8 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.2 μM 6-benzylaminopurine (BA). A large number of globular somatic embryos were obtained on transfer of the callus to MS liquid medium supplemented with 87.6 mM sucrose, 1.1 μM 2,4-D, and improved by the addition of 342.4 μM l-glutamine. MS medium supplemented with 87.6 mM sucrose was more effective in somatic embryo production than other sugars. Subsequent development led to the formation of heart-and torpedo-shaped embryos. Maturation of somatic embryos occurred on plant growth regulator-free MS semi-solid medium containing 175.2 mM sucrose and 0.5 gl−1 activated charcoal. Conversion of embryos into plants was achieved on half-strength MS semi-solid medium containing 87.6 mM sucrose and 1.4 μM gibberellic acid (GA3) in a 16h photoperiod. Twenty-seven percent of embryos were converted into normal plants.  相似文献   

14.
Summary A system for the regeneration of spinach (Spinacia oleracea L.) from mature dry seed explants has been established. The response of two commercial spinach cultivars, ‘Grandstand’ and ‘Baker’, was examined. Callus proliferation was most prominent on MS medium supplemented with 9.3 μM of 6-furfurylaminopurine (kinetin) and 3.39 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious shoot formation was observed within 8 wk after callus was transferred onto regeneration medium. Shoot regeneration was best from callus induced on 9.3 μM kinetin and 4.56 μM 2,4-D. The regeneration medium contained 9.3 μM kinetin, 0.045 μM 2,4-D, and 2.89 μM gibberellic acid (GA3). Shoots were rooted on hormone-free medium, and plants grown in a greenhouse showed normal phenotype. This system is beneficial in rapid propagation of spinach plants, particularly when only a limited number of seeds are available.  相似文献   

15.
Summary A novel protocol has been developed for inducing somatic embryogenesis from leaf cultures of Decalepis hamiltonii. Callus was obtained from leaf sections in Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA)+N6-benzyladenine (BA) or 2,4-dichlorophenoxyacetic acid (2,4-D)+BA. Nodular embryogenic callus developed from the cut end of explants on media containing 2,4-D and BA, whereas compact callus developed on media containing NAA and BA. Upon subsequent transfer of explants with primary callus onto MS media containing zeatin and/or gibberellic acid (GA3) and BA, treatment with zeatin (13.68μM) and BA (10.65 μM) resulted in the induction of the highest number of somatic embryos directly from nodular tissue. The maturation of embryos took place along with the induction on the same medium. Embryogenic calluses with somatic embryos were subcultured onto MS basal medium supplemented with 4.56μM zeatin+10.65 μM BA. After 4wk, more extensive differentiation of somatic embryos was observed. The mature embryos developed into complete plantlets on growth regulator-free MS medium. A distinct feature of this study is the induction of somatic embryogenesis from leaf explants of Decalepis hamiltonii, which has not been reported previously. By using this protocol, complete plantlets could be regenerated through indirect somatic embryogenesis or organogenesis from leaf explants in 12–16 wk.  相似文献   

16.
A novel protocol for callus-mediated shoot regeneration was established for an important medicinal and ornamental plant native to South China, Curcuma kwangsiensis, using shoot base sections excised from seedlings in vitro as explant sources. The frequency of callus formation reached 91% for explants cultured on MS medium containing 1.4 μM TDZ, 4.4 μM BA and 2.3 μM 2,4-D. 8.2 shoots per callus was achieved on MS medium supplemented with 1.4 μM TDZ, 17.8 μM BA and 2.7 μM NAA. Single shoots transferred into MS medium free of plant growth regulator rooted well. Regenerated plants acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions.  相似文献   

17.
 A long-term regeneration system for garlic (Allium sativum L.) clones of diverse origin was developed. Callus was initiated on a modified Gamborg's B-5 medium supplemented with 4.5 μM 2,4-D and maintained on the same basal medium with 4.7 μM picloram+0.49 μM 2iP. Regeneration potential of callus after 5, 12 and 16 months on maintenance medium was measured using several plant growth regulator treatments. The 1.4 μM picloram+13.3 μM BA treatment stimulated the highest rate of shoot production. Regeneration rate decreased as callus age increased, but healthy plantlets from callus cultures up to 16-months-old were produced for all clones. Regeneration of long-term garlic callus cultures could be useful for clonal propagation and transformation. Received: 24 September 1998 / Revision received: 27 January 1999 / Accepted: 26 February 1999  相似文献   

18.
A protocol has been developed for somatic embryogenesis and subsequent plant regeneration in Allium schoenoprasum L. Calli were induced from root sections isolated from axenic seedlings and cultivated on media containing either Murashige and Skoog’s (MS) or Dunstan and Short’s mineral solution supplemented with 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 6-benzylaminopurine (BA), 6-furfurylaminopurine (Kin) or thidiazuron (TDZ) at 1, 5 or 10 μM. The highest frequencies of callus induction were achieved on media with 5 μM 2,4-D in combination with 5 μM TDZ or 10 μM BA (78.9% and 78.4%, respectively). Calli were then transferred to 1 μM 2,4-D, where compact yellow callus turned to segmented yellowish callus with transparent globular somatic embryos at the surface. Calli that were previously grown on media with 5 μM 2,4-D in combination with 10 μM BA or 10 μM TDZ showed the highest frequencies of embryogenic callus formation (45% and 42%) as well as mean number of somatic embryos per regenerating callus. The choice of mineral solution formulation did not significantly affect callus induction or embryogenic callus formation. The embryos could complete development into whole plants on plant growth regulator (PGR)-free medium, but inclusion of Kin (0.5, 2.5 and 5 μM) in this phase improved somatic embryo development and multiplication. Subsequently transferred to 1/2 MS PGR-free medium, all embryos rooted and the survival rate of the plants in a greenhouse was 96%.  相似文献   

19.
Summary Stem nodal explants of Paphiopedilum philippinense hybrids (hybrid PH59 and PH60) directly formed shoots when cultured on a modified half-strength Murashige and Skoog (1962) basal medium supplemented with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D: 4.52 and 45.25 μM) and 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ; 0.45 and 4.54 μM) for 6 mo. On hormone-free basal medium, the percentages of explants with shoots were 33.3% and 0% and the shoot numbers per explant were 1 and 0 in hybrid PH59 and hybrid PH60, respectively. In hybrid PH59, 4.52 μM 2,4-D plus 0.45μM TDZ induced a higher percentage of explants with shoots and shoot number per explant than did the hormone-free treatment. In hybrid PH60, although 4.52 μM 2,4-D and 0.45 μM TDZ promoted shoot formation, the highest shoot number was found with 4.52 μM 2,4-D alone. Plantlets, each having several roots, were obtained from regenerated shoots after transferring onto hormone-free basal medium for 3 mo. The plantlets were potted in sphagnum moss, and acclimatized well in a greenhouse.  相似文献   

20.
Summary The liliaceous perennial plants, Tricyrtis spp., are cultivated as ornamental plants in Japan. Natural populations of several Japanese Tricyrtis spp. are severely threatened by indiscriminate collection and habitat destruction. In this study, a plant regeneration system based on somatic embryogenesis has been developed for efficient clonal propagation of T. hirta, T. hirta var. albescens, T. formosana, T. formosana cv. Fujimusume, T. flava ssp. ohsumiensis, and T. macrantha ssp. macranthopsis. Flower tepal explants of these genotypes were cultured on media containing 2,4-dichlorophenoxyacetic acid (2,4-D) or 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC) alone or in combination with N-(1,2,3-thiadiazol-5-yl)-N′-phenylurea (thidiazuron, TDZ). Calluses induced on media containing 2,4-D produced somatic embryos following their transfer to a plant growth regulator-free medium, indicating that these calluses were embryogenic. A combination of 4.5μM2,4-D and 0.45 μM TDZ was most effective for inducing embryogenic calluses from tepal explants. Among various explant sources, filaments were most suitable for inducing embryogenic calluses on a medium containing 4.5μM 2,4-D and 0.45 μM TDZ. Embryogenic calluses were only obtained from filament explants for T. macrantha ssp. macranthopsis. Embryogenic calluses could be maintained by subculturing monthly onto the same medium, and a 1.5–3.5-fold increase in fresh weight was obtained after 1 mo. of subculture. Depending on the plant genotype, 50–500 somatic embryos per 0.5g fresh weight of embryogenic callus was obtained 1 mo. after transfer to a plant growth regulator-free medium. Most of the embryos developed into plantlets, and they were successfully acclimatized to greenhouse conditions. Regenerated plants showed no alteration in the ploidy level as indicated by chromosome observation and flow cytometric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号