首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Isometric force developed by skinned gizzard muscle fiber bundles and levels of phosphorylation and thiophosphorylation of the 20,000-dalton myosin light chain were determined. These data showed a highly non-linear relationship between isometric force and myosin light-chain phosphorylation. Maximum force was developed at approximately 0.2 mol of phosphate/mol of light chain as reported previously (Hoar, P. E., Kerrick, W. G. L., and Cassidy, P. S. (1979) Science 204, 503-506). In contrast, the relationship between isometric force and myosin light-chain thiophosphorylation was linear, with maximum force occurring at 1.0 mol of thiophosphate/mol of myosin light chain. These observations are consistent with the latch-bridge hypothesis for conditions of varying myosin light-chain phosphatase/myosin light-chain kinase activity ratios as discussed by Hai and Murphy [1988) Am. J. Physiol. 254, C99-C106). To further test the latch-bridge hypothesis, ATPase activity was also measured during isometric force development in these fiber bundles. The relationship between isometric force and ATPase activity was linear whether the myosin light chains were phosphorylated or thiophosphorylated. Thus the number of cycling myosin cross-bridges, as measured by ATPase activity, was directly proportional to the force the muscle developed, not to the level of myosin light-chain phosphorylation. This finding that high levels of tension generated at low levels of light-chain phosphorylation are associated with high levels of ATPase activity is inconsistent with the latch-bridge model (Hai and Murphy, 1988).  相似文献   

2.
The effects of isoproterenol on isometric force, unloaded shortening velocity, and myosin phosphorylation were examined in thin muscle bundles (0.1-0.2 mm diam) dissected from lamb tracheal smooth muscle. Methacholine (10(-6) M) induced rapid increases in isometric force and in phosphorylation of the 20,000-Da myosin light chain. Myosin phosphorylation remained elevated during steady-state maintenance of isometric force. The shortening velocity peaked at 15 s after stimulation with methacholine and then declined to approximately 45% of the maximal value by 3 min. Isoproterenol pretreatment inhibited methacholine-stimulated myosin light chain phosphorylation, shortening velocity, and force during the early stages of force generation. However, the inhibitory effect of isoproterenol on force and myosin phosphorylation is proportionally greater than that on shortening velocity. Isoproterenol pretreatment also caused a rightward non-parallel shift in the methacholine dose-response curves for both isometric tension and myosin light chain phosphorylation. These data demonstrate that isoproterenol attenuates the contractile properties of airway smooth muscles by affecting the rate and extent of myosin light chain phosphorylation, perhaps through a mechanism that involves the synergistic interaction of myosin light chain kinase phosphorylation and Ca2+ metabolism.  相似文献   

3.
We have studied the effect of myosin P-light chain phosphorylation on the isometric tension generated by skinned fibers from rabbit psoas muscle at 0.6 and 10 microM Ca2+. At the lower Ca2+ concentration, which produced 10-20% of the maximal isometric tension obtained at 10 microM Ca2+, addition of purified myosin light chain resulted in a 50% increase in isometric tension which correlated with an increase in P-light chain phosphorylation from 0.10 to 0.80 mol of phosphate/mol of P-light chain. Addition of a phosphoprotein phosphatase reversed the isometric tension response and dephosphorylated P-light chain. At the higher Ca2+ concentration, P-light chain phosphorylation was found to have little effect on isometric tension. Fibers prepared and stored at -20 degrees C in a buffer containing MgATP, KF, and potassium phosphate incorporated 0.80 mol of phosphate/mol of P-light chain. Addition of phosphoprotein phosphatase to these fibers incubated at 0.6 microM Ca2+ caused a reduction in isometric tension and dephosphorylation of the P-light chain. There was no difference before and after phosphorylation of P-light chain in the normalized force-velocity relationship for fibers at the lower Ca2+ concentration, and the extrapolated maximum shortening velocity was 2.2 fiber lengths/s. Our results suggest that in vertebrate skeletal muscle, P-light chain phosphorylation increases the force level at submaximal Ca2+ concentrations, probably by affecting the interaction between the myosin cross-bridge and the thin filament.  相似文献   

4.
Protein kinase C phosphorylates different sites on the 20,000-Da light chain of smooth muscle heavy meromyosin (HMM) than did myosin light chain kinase (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072). Although protein kinase C incorporates 1 mol of phosphate into 1 mol of 20,000-Da light chain when either HMM or the whole myosin molecule is used as a substrate, it catalyzes the incorporation of up to 3 mol of phosphate/mol of 20,000-Da light chain when the isolated light chains are used as a substrate. Threonine is the major phosphoamino acid resulting from phosphorylation of HMM by protein kinase C. Prephosphorylation of HMM by protein kinase C decreases the rate of phosphorylation of HMM by myosin light chain kinase due to a 9-fold increase of the Km for prephosphorylated HMM compared to that of unphosphorylated HMM. Prephosphorylation of HMM by myosin light chain kinase also results in a decrease of the rate of phosphorylation by protein kinase C due to a 2-fold increase of the Km for HMM. Both prephosphorylations have little or no effect on the maximum rate of phosphorylation. The sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C results in a decrease in actin-activated MgATPase activity due to a 7-fold increase of the Km for actin over that observed with phosphorylated HMM by myosin light chain kinase but has little effect on the maximum rate of the actin-activated MgATPase activity. The decrease of the actin-activated MgATPase activity correlates well with the extent of the additional phosphorylation of HMM by protein kinase C following initial phosphorylation by myosin light chain kinase.  相似文献   

5.
It is now well-established that phosphorylation of the 20,000-dalton light chain of smooth muscle myosin (LC20) is a prerequisite for muscle contraction. However, the relationship between myosin dephosphorylation and muscle relaxation remains controversial. In the present study, we utilized a highly purified catalytic subunit of a type-2, skeletal muscle phosphoprotein phosphatase (protein phosphatase 2A) and a glycerinated smooth muscle preparation to determine if myosin dephosphorylation, in the presence of saturating calcium and calmodulin, would cause relaxation of contracted uterine smooth muscle. Addition of the phosphatase catalytic subunit (0.28 microM) to the muscle bath produced complete relaxation of the muscle. The phosphatase-induced relaxation could be reversed by adding to the muscle bath either purified, thiophosphorylated, chicken gizzard 20,000-dalton myosin light chains or purified, chicken gizzard myosin light chain kinase. Incubation of skinned muscles with adenosine 5'-O-(thiotriphosphate) prior to the addition of phosphatase resulted in the incorporation of 0.93 mol of PO4/mol of LC20 and prevented phosphatase-induced relaxation. Under all of the above conditions, changes in steady-state isometric force were associated with parallel changes in myosin light chain phosphorylation over a range of phosphorylation extending from 0.01 to 0.97 mol of PO4/mol of LC20. We found no evidence that dephosphorylation of contracted uterine smooth muscles, in the presence of calcium and calmodulin, could produce a latch-state where isometric force was maintained in the absence of myosin light chain phosphorylation. These results show that phosphorylation or dephosphorylation of the 20,000-dalton myosin light chain is adequate for the regulation of contraction or relaxation, respectively, in glycerinated uterine smooth muscle.  相似文献   

6.
Phosphorylation of rabbit skeletal muscle myosin in situ   总被引:4,自引:0,他引:4  
Myosin light chain (P light chain) is phosphorylated by Ca2+ X calmodulin-dependent myosin light chain kinase. Based on studies with rat skeletal muscles, it has been shown that P light chain phosphorylation correlated to the extent of potentiation of isometric twitch tension. It is not clear whether this correlation exists in rabbit skeletal muscle, which has been the primary source of contractile proteins for biochemical studies. Therefore, phosphorylation of myosin P light chain in rabbit slow-twitch soleus and fast-twitch plantaris muscles in situ was examined. Electrical stimulation (5 Hz, 20 seconds) of plantaris muscle produced an increase in the phosphate content of P light chain from 0.17 to 0.45 mol phosphate/mol P light chain. This increase in phosphate content was accompanied by a 58% increase in maximal isometric twitch tension. Tetanic stimulation (100 Hz, 15 seconds) of rabbit soleus muscle resulted in only a small increase in P light chain phosphate content from 0.02 to 0.10 mol phosphate/mol P light chain, and posttetanic twitch tension did not increase significantly. The correlation between potentiated isometric twitch tension and P light chain phosphorylation in rabbit fast-twitch muscle is similar to that observed in rat skeletal muscle. These results were consistent with the hypothesis that phosphorylation of rabbit skeletal muscle myosin, which results in an increase in actin-activated ATPase activity, may be related to isometric twitch potentiation.  相似文献   

7.
Stretching of rat uterine strips induced phosphorylation of the 20,000-Da light chain of myosin to the same extent as was observed in strips contracted by carbachol or oxytocin. Stretching also reversed the partial dephosphorylation of light chain caused by treatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) for 1 min. However, complete dephosphorylation of the light chain with 50-min EGTA-treatment could not be reversed by stretch. When stretched uterine strips containing light chain with a phosphate content greater than 0.75 mol/mol were quick-released, active force developed. On the other hand, when the phosphate content of light chain was reduced to less than 0.25 mol/mol, quick-release of the stretched strips did not produce active force. It is shown that Ca2+ mobilized from intracellular sources is involved in stretch-induced phosphorylation. The data indicate that myosin light chain phosphorylation is a prerequisite for active force development in smooth muscle.  相似文献   

8.
1. Relationship between length-tension relation and phosphorylation of 20,000 dalton myosin light chain (LC20) in guinea-pig taenia caeci was investigated. 2. At in situ length (Lb), a good linear correlation was obtained between isometric tension and LC20 phosphorylation in high-K+-stimulated muscle. 3. In 100 mM K+-stimulated muscle, the active tension decreased at muscle lengths other than Lb, but no significant decrease in degree of LC20 phosphorylation was observed. 4. These results suggest that in guinea-pig taenia caeci, the major portion of the decrease in active tension at muscle lengths other than Lb is not due to a decrease in degree of activation.  相似文献   

9.
Cultured airway smooth muscle cells subjected to cyclic deformational strain have increased cell content of myosin light chain kinase (MLCK) and myosin and increased formation of actin filaments. To determine how these changes may increase cell contractility, we measured isometric force production with changes in cytosolic calcium in individual permeabilized cells. The pCa for 50% maximal force production was 6.6+/-0.4 in the strain cells compared with 5.9+/-0.3 in control cells, signifying increased calcium sensitivity in strain cells. Maximal force production was also greater in strain cells (8.6+/-2.9 vs. 5.7+/-3.1 microN). The increased maximal force production in strain cells persisted after irreversible thiophosphorylation of myosin light chain, signifying that increased force could not be explained by differences in myosin light chain phosphorylation. Cells strained for brief periods sufficient to increase cytoskeletal organization but insufficient to increase contractile protein content also produced more force, suggesting that strain-induced cytoskeletal reorganization also increases force production.  相似文献   

10.
Effects of isoproterenol on isometric force, and 20,000 Da myosin light chain (LC20) phosphorylation were examined in smooth muscle fibre strips from lamb trachea stimulated with endothelin-1 (ET-1). ET-1 induced a rapidly rising isometric tension which was coupled with a multiple site phosphorylation of LC20. Isoproterenol addition at the time of peak isometric force resulted in a brisk relaxation of the fibre strips. Myosin light chain phosphorylation, however, remained unaffected.  相似文献   

11.
This study determined the effects of increased intracellular cAMP and cAMP-dependent protein kinase activation on endothelial cell basal and thrombin-induced isometric tension development. Elevation of cAMP and maximal cAMP-dependent protein kinase activation induced by 10 microm forskolin, 40 microm 3-isobutyl-1-methylxanthine caused a 50% reduction in myosin II regulatory light chain (RLC) phosphorylation and a 35% drop in isometric tension, but it did not inhibit thrombin-stimulated increases in RLC phosphorylation and isometric tension. Elevation of cAMP did not alter myosin light chain kinase catalytic activity. However, direct inhibition of myosin light chain kinase with KT5926 resulted in a 90% decrease in RLC phosphorylation and only a minimal decrease in isometric tension, but it prevented thrombin-induced increases in RLC phosphorylation and isometric tension development. We showed that elevated cAMP increases phosphorylation of RhoA 10-fold, and this is accompanied by a 60% decrease in RhoA activity and a 78% increase in RLC phosphatase activity. Evidence is presented that it is this inactivation of RhoA that regulates the decrease in isometric tension through a pathway involving cofilin. Activated cofilin correlates with increased F-actin severing activity in cell extracts from monolayers treated with forskolin/3-isobutyl-1-methylxanthine. Pretreatment of cultures with tautomycin, a protein phosphatase type 1 inhibitor, blocked the effect of cAMP on 1) the dephosphorylation of cofilin, 2) the decrease in RLC phosphorylation, and 3) the decrease in isometric tension. Together, these data provide in vivo evidence that elevated intracellular cAMP regulates endothelial cell isometric tension and RLC phosphorylation through inhibition of RhoA signaling and its downstream pathways that regulate myosin II activity and actin reorganization.  相似文献   

12.
Biochemical events associated with activation of smooth muscle contraction   总被引:4,自引:0,他引:4  
Biochemical events associated with activation of smooth muscle contraction were studied in neurally stimulated bovine tracheal smooth muscle. A latency period of 500 ms preceded increases in isometric force and myosin light chain phosphorylation. However, stimulation resulted in the rapid hydrolysis of inositol phospholipids as demonstrated by increases in inositol phosphates by 500 ms. Inositol trisphosphate increased 2-fold with no significant change in inositol tetrakisphosphate. The apparent activation state of myosin light chain kinase was assessed indirectly through measurements of the fractional activation of a second calmodulin-dependent enzyme, cyclic nucleotide phosphodiesterase. The fractional activation of cyclic nucleotide phosphodiesterase increased after neural stimulation to a maximal extent by 500 ms and remained at this level for at least 4 s. The monophosphorylation of myosin light chain increased after 500 ms and reached a maximum value by 2 s. Diphosphorylation also occurred but to a much lesser extent. Fractional activation of cyclic nucleotide phosphodiesterase and myosin light chain phosphorylation both decreased after 10 min continuous stimulation, although the force response remained at a maximal level. These observations demonstrate that inositol trisphosphate formation and activation of cyclic nucleotide phosphodiesterase (and hence most likely myosin light chain kinase) by calmodulin precede myosin light chain phosphorylation and that these events are sufficiently rapid to mediate the contractile response of neurally stimulated tracheal smooth muscle.  相似文献   

13.
We investigated whether myosin light chain phosphatase activity changes during nitric oxide-induced relaxation of contracted intact carotid media and how changes in phosphatase activity mediate this relaxation. We also investigated one mechanism for regulating this phosphatase. Myosin phosphatase activity, myosin light chain phosphorylation, guanosine 3',5'-cyclic monophosphate (cGMP) concentration, and phosphorylation of the inhibitory protein CPI-17 were all assayed in homogenates of one carotid media ring at each time point during nitric oxide-induced relaxation. The application of sodium nitroprusside to histamine-contracted media caused rapid declines in light chain phosphorylation and force. These were temporally correlated with a rapid elevation of cGMP and a large transient increase in myosin phosphatase activity. During the early response to nitroprusside, when force declined, increases in myosin phosphatase activity, concurrent with cGMP-mediated decreases in calcium and myosin light chain kinase activity, could accelerate light chain dephosphorylation. CPI-17 was dephosphorylated upon application of nitroprusside at the same time that myosin phosphatase activity increased, suggesting that the removal of inhibition by phospho-CPI-17 contributed to the increase in myosin phosphatase activity. After 20 min of nitroprusside, myosin phosphatase activity had declined to basal levels, however low force was sustained. Additional light chain phosphorylation-independent mechanisms may be involved in sustaining the relaxation.  相似文献   

14.
The role of 20000 dalton myosin light chain phosphorylation in mediating venous smooth muscle contraction was studied in isolated preparations of canine jugular and femoral vein. One min 10(-5) M norepinephrine-induced contraction was accompanied by significant increases in phosphorylation (jugular - 21 to 46%; femoral - 19 to 54%) which were reversed within 10 min after agonist washout. During 40 min stimulation, phosphorylation and isometric force redevelopment rates declined to near basal levels while force was maintained. These findings implicate light chain phosphorylation as a prerequisite for initial tension development by crossbridge cycling in venous smooth muscle. However, long term tension can be maintained through a process similar to the latchbridge state in tracheal and arterial smooth muscle.  相似文献   

15.
The phosphatase inhibitor, okadaic acid, has been used to test the hypothesis that myosin light chain phosphatase activity plays a central role in latchbridge formation in smooth muscle. In the permeabilized rabbit portal vein there is a non-linear relationship between myosin light chain phosphorylation and force production such that maximum force output occurs with about 50% phosphorylation. Treatment of the muscle with okadaic acid does not change this relationship even though there is a profound inhibition of phosphatase activity. The data suggest that dephosphorylation of the myosin light chain while the myosin is in the force producing state does not account for the high force output with low levels of light chain phosphorylation in smooth muscle.  相似文献   

16.
Phosphorylation of the regulatory light chain by myosin light chain kinase (MLCK) regulates the motor activity of smooth muscle and nonmuscle myosin II. We have designed reagents to detect this phosphorylation event in living cells. A new fluorescent protein biosensor of myosin II regulatory light chain phosphorylation (FRLC-Rmyosin II) is described here. The biosensor depends upon energy transfer from fluorescein-labeled regulatory light chains to rhodamine-labeled essential and/or heavy chains. The energy transfer ratio increases by up to 26% when the regulatory light chain is phosphorylated by MLCK. The majority of the change in energy transfer is from regulatory light chain phosphorylation by MLCK (versus phosphorylation by protein kinase C). Folding/unfolding, filament assembly, and actin binding do not have a large effect on the energy transfer ratio. FRLC-Rmyosin II has been microinjected into living cells, where it incorporates into stress fibers and transverse fibers. Treatment of fibroblasts containing FRLC-Rmyosin II with the kinase inhibitor staurosporine produced a lower ratio of rhodamine/fluorescein emission, which corresponds to a lower level of myosin II regulatory light chain phosphorylation. Locomoting fibroblasts containing FRLC-Rmyosin II showed a gradient of myosin II phosphorylation that was lowest near the leading edge and highest in the tail region of these cells, which correlates with previously observed gradients of free calcium and calmodulin activation. Maximal myosin II motor force in the tail may contribute to help cells maintain their polarized shape, retract the tail as the cell moves forward, and deliver disassembled subunits to the leading edge for incorporation into new fibers.  相似文献   

17.
The effects of vanadate were examined on Ca2+-activated force and phosphorylation of 20-kDa myosin light chain in membrane-permeabilized rabbit aortic smooth muscle strips. Addition of vanadate during maximum contraction reduced the force in a dose-dependent manner, and inhibited it almost completely at 1 mM. Two-dimensional polyacrylamide gel electrophoretic analyses revealed that vanadate also reduced the phosphorylation of 20- kDa myosin light chain in a dose-dependent manner from approximately 50% in the absence of vanadate to approximately 20% in the presence of 1 mM vanadate. The effects of 1 mM vanadate on purified myosin light chain kinase and phosphatase were then examined using purified myosin as substrate, and it was found that vanadate neither inhibited myosin light chain kinase nor activated myosin light chain phosphatase. These results indicate that the reduction in the 20-kDa myosin light chain phosphorylation level by vanadate may be effected through its inhibition of the force generation in skinned smooth muscle strip, as evidenced by the finding that vanadate eliminated the enhancement of myosin light chain kinase activity brought about by the interaction between purified myosin and actin.  相似文献   

18.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

19.
The phosphorylation of regulatory myosin light chains by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK) has been shown to be essential and sufficient for initiation of endothelial cell retraction in saponin permeabilized monolayers (Wysolmerski, R. B. and D. Lagunoff. 1990. Proc. Natl. Acad. Sci. USA. 87:16-20). We now report the effects of thrombin stimulation on human umbilical vein endothelial cell (HUVE) actin, myosin II and the functional correlate of the activated actomyosin based contractile system, isometric tension development. Using a newly designed isometric tension apparatus, we recorded quantitative changes in isometric tension from paired monolayers. Thrombin stimulation results in a rapid sustained isometric contraction that increases 2- to 2.5-fold within 5 min and remains elevated for at least 60 min. The phosphorylatable myosin light chains from HUVE were found to exist as two isoforms, differing in their molecular weights and isoelectric points. Resting isometric tension is associated with a basal phosphorylation of 0.54 mol PO4/mol myosin light chain. After thrombin treatment, phosphorylation rapidly increases to 1.61 mol PO4/mol myosin light chain within 60 s and remains elevated for the duration of the experiment. Myosin light chain phosphorylation precedes the development of isometric tension and maximal phosphorylation is maintained during the sustained phase of isometric contraction. Tryptic phosphopeptide maps from both control and thrombin-stimulated cultures resolve both monophosphorylated Ser-19 and diphosphorylated Ser-19/Thr-18 peptides indicative of MLCK activation. Changes in the polymerization of actin and association of myosin II correlate temporally with the phosphorylation of myosin II and development of isometric tension. Activation results in a 57% increase in F-actin content within 90 s and 90% of the soluble myosin II associates with the reorganizing F-actin. Furthermore, the disposition of actin and myosin II undergoes striking reorganization. F- actin initially forms a fine network of filaments that fills the cytoplasm and then reorganizes into prominent stress fibers. Myosin II rapidly forms discrete aggregates associated with the actin network and by 2.5 min assumes a distinct periodic distribution along the stress fibers.  相似文献   

20.
Mechanochemical coupling in spin-labeled, active, isometric muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Observed effects of inorganic phosphate (P(i)) on active isometric muscle may provide the answer to one of the fundamental questions in muscle biophysics: how are the free energies of the chemical species in the myosin-catalyzed ATP hydrolysis (ATPase) reaction coupled to muscle force?. Pflugers Arch. 414:73-81) showed that active, isometric muscle force varies logarithmically with [P(i)]. Here, by simultaneously measuring electron paramagnetic resonance and the force of spin-labeled muscle fibers, we show that, in active, isometric muscle, the fraction of myosin heads in any given biochemical state is independent of both [P(i)] and force. These direct observations of mechanochemical coupling in muscle are immediately described by a muscle equation of state containing muscle force as a state variable. These results challenge the conventional assumption mechanochemical coupling is localized to individual myosin heads in muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号