首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experiment was conducted to study the effects of different selenium (Se) sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. A total of 12 sows (Landrace×Yorkshire) with same pregnancy were randomly divided into two groups; each group was replicated six times. These two groups received the same basal gestation and lactation diets containing 0.042 mg Se/kg, supplemented with 0.3 mg Se/kg sodium selenite or selenomethionine (i.e., seneno-dl-methylseleno), respectively. The feeding trial lasted for 60 days, with 32 and 28 days for gestation and lactation period, respectively. Compared with sodium selenite, maternal selenomethionine intake significantly increased (P < 0.05) the weaning litter weight and average weight of piglet. The Se concentration in the serum, colostrum, and milk of sows were significantly higher (p < 0.05) in the selenomethionine-treated group. The antioxidant status was greatly improved in sows of selenomethionine-treated group and was illuminated by the increased total antioxidant capability (T-AOC; P < 0.05) and decreased malondialdehyde (MDA; P < 0.01) level in the serum of sows, increased T-AOC (P < 0.05), glutathione (GSH) peroxidase (P < 0.05), superoxide dismutase (P < 0.05) and GSH (P < 0.05), and MDA (P < 0.05) level in the colostrum and milk of sows. These results suggested that maternal selenomethionine intake improved Se concentration and antioxidant status of sows, thus maintain maternal health and increase productive performance after Se was transferred to its offspring.  相似文献   

2.
The present study was undertaken to explore the effect of administration of high doses of sodium selenite on the expression of Bcl-2 in patients with non-Hodgkin’s lymphoma (NHL). Fifty patients with newly diagnosed NHL were randomly divided into two groups. Group A-I received standard chemotherapy whereas group A-II received adjuvant sodium selenite 0.2 mg kg−1 day−1 for 30 days in addition to chemotherapy. Enzyme-linked immunosorbent assay was used to assess Bcl-2 at the time of diagnosis and after therapy in the two groups. Sodium selenite administration resulted in significant decline of Bcl-2 level after therapy in group A-II (8.6 ± 6.9 ng/ml vs 3 6.9 ± 7.9 ng/ml, P < 0.05). Also, complete response reached 60% in group A-II compared to 40% in group A-I. Significant increase in CD4/CD8 ratio was noticed in group A-II compared to group A-I after therapy (1.45 ± 0.36 vs 1.10 ± 0.28 p 0.04). Overall survival time in months was significantly longer in complete remission patients in group A-II (21.87 ± 1.41) compared to group A-I (19.70 ± 1.95) (p = 0.01). It is concluded that sodium selenite administration at the dosage and duration chosen acts as a downregulator of Bcl-2 and improves clinical outcome.  相似文献   

3.
Forty-eight 2-year-old Liaoning Cashmere goats (body weight = 38.0 ± 2.94 kg) were used to investigate the effects of dietary iodine (I) and selenium (Se) supplementation on nutrient digestibility, serum thyroid hormones, and antioxidant status during the cashmere telogen period to learn more about the effects of dietary I and Se on nutrition or health status of Cashmere goats. The goats were equally divided into six groups of eight animals each that were treated with 0, 2, or 4 mg of supplemental I/kg dry matter (DM) and 0 or 1 mg of supplemental Se/kg DM in a 2 × 3 factorial arrangement of treatments. The six treatments were I0Se0, I2Se0, I4Se0, I0Se1, I2Se1, and I4Se1. The concentrations of I and Se in the basal diet were 0.67 and 0.09 mg/kg DM, respectively. The study started in March and proceeded for 45 days. Supplemental I or Se alone had no effect on nutrient digestibility and nitrogen metabolism. However, the interaction between I and Se was significant regarding the digestibility of acid detergent fiber (ADF; P < 0.05), and compared with group I4Se1, the digestibility of ADF was significantly increased in group I4Se0 (P < 0.05). Selenium supplementation did not affect serum triiodothyronine (T3) or thyroxine (T4) concentrations. However, the concentration of serum T4 but not that of T3 was significantly increased with I supplementation (P < 0.05). In addition, serum superoxide dismutase (SOD) activity was not affected (P > 0.05), but serum glutathione peroxidase (GSH-Px) activity was significantly decreased by I supplementation (P < 0.05). The antioxidant status was improved by Se supplementation, and the activities of SOD and GSH-Px were significantly increased (P < 0.05).  相似文献   

4.
The objective of this study was to investigate the effects of different forms of Se supplementation on the antioxidant defense and glucose homeostasis in experimental diabetes. Sodium selenate (SS) or selenomethionine (SM) were administered (2 μmol Se kg−1 day−1) via orogastric route to streptozotocine (STZ)-induced diabetic rats in addition to basal diet for 12 weeks. Glucose levels in whole blood, glutathione peroxidase (GSH-Px) activity in erythrocytes, Se and fructosamine levels in plasma were evaluated monthly. Plasma Se levels increased significantly in all diabetic groups compared to basal measurements, being more prominent in SM group [p(SM3/SM0) = 0.018]. The increase in GSH-Px activities was significant at the end of the second month in SS [p(SS2/SS0) = 0.028], whereas at the end of the third month in SM the value was lower [p(SM3/SM0) = 0.018] and the unsupplemented diabetic control (DC) groups, p(DC3/DC0) = 0.012. Glucose increased significantly only in DC group. Fructosamine increased gradually in all diabetic groups, being significant in DC and SS groups. At the end of the third month, highest fructosamine levels were observed in SS group, which were significantly higher than the SM group [p(SM/SS) = 0.010]. In conclusion, Se augmented the antioxidant defense by increasing GSH-Px activity and this effect was more prominent when Se was supplemented as SM, which exerted positive effects also on glucose homeostasis.  相似文献   

5.
The assumption that working on board ship is more strenuous than comparable work ashore was investigated in this study. Various physiological parameters (O2, CO2, E and HR) have been measured to determine the energy expenditure of subjects walking slowly on a moving platform (ship motion simulator). Twelve subjects (eight men and four women) walked either freely on the floor or on a treadmill at a speed of 1 m · s−1. Platform motion was either in a heave, pitch or roll mode. These three conditions were compared with a control condition in which the platform remained stationary. The results showed that during pitch and roll movements of the platform, the energy expenditure for the same walking task was about 30% higher than under the stationary control condition (3.6 J · kg−1 · m−1 vs 2.5 J · kg−1 · m−1, P < 0.05) for both walking on a treadmill and free walking. The heart rate data supported the higher energy expenditure results with an elevation of the heart rate (112 beats · min−1 vs 103 beats · min−1, P < 0.05). The heave condition did not differ significantly from the stationary control condition. Pitch and roll were not significantly different from each other. During all experimental conditions free walking resulted in a higher energy cost of walking than treadmill walking (3.5 J · kg−1 · m−1 vs 2.7 J · kg−1 · m−1, P < 0.05) at the same average speed. The results of this experiment were interpreted as indicating that the muscular effort, needed for maintaining balance when walking on a pitching or rolling platform, resulted in a significantly higher work load than similar walking on a stable or a heaving floor, independent of the mode of walking. These results explain in part the increased fatigue observed when a task is performed on a moving platform. Accepted: 3 October 1997  相似文献   

6.
Selenium (Se) is an essential micronutrient for animal and human nutrition, but whether it is essential to plants remains controversial. However, there are increasing experimental evidences that indicate a protective role of Se against the oxidative stress in higher plants through Se-dependent glutathione peroxidase (GSH-Px) activity. The effects of the Se chemical forms, selenite and selenate, the rate of their application on shoot Se concentration and their influence on the antioxidative system of ryegrass (Lolium perenne cv. Aries), through the measurement of GSH-Px activity and lipid peroxidation, were evaluated in an Andisol of Southern Chile. Moreover, a soil–plant relationship for Se was determined and a simple method to extract available Se from acid soils is proposed. In a 55-day experiment ryegrass seeds were sown in pots and soil was treated with sodium selenite or sodium selenate (0–10 mg Se kg−1). The results showed that the Se concentration in shoots increased with the application of both selenite and selenate. However, the highest shoot Se concentrations were obtained in selenate-treated plants. For both sources of Se, there was a significant positive correlation between the shoot Se concentration and the GSH-Px activity; and the Se-dependence of this enzymatic activity was related especially with the chemical form of applied Se rather than the Se concentration in plant tissues. Furthermore, the lipid peroxidation, as measured by Thiobarbituric Acid Reactive Substances (TBARS), decreased at low levels of shoot Se concentration, reaching the lowest level at approximately 20 mg Se kg−1 in plants and then increased steadily above this level. In addition, the acid extraction method used to evaluate available Se in soil showed a positive good correlation between soil Se and shoot Se concentrations irrespective of chemical form of Se applied.  相似文献   

7.
Ellagic acid (EA) is a natural polyphenolic compound. Although, modulator effects of EA on copper (Cu) and zinc (Zn) levels in some liver diseases have been reported in experimental animals, its effects in obstructive jaundice (OJ) has not been clarified. We aimed to evaluate potential effects of EA on Cu and Zn levels in liver and serum of cholestatic rats. Forty Wistar albino rats were equally divided into four groups. First group was used as controls. Second group received EA (60 mg−1 kg−1 day−1) for 8 days. Third was OJ group, and fourth group was OJ plus EA group. After 8 days, blood and liver samples were obtained. Higher serum and liver Cu and lower serum and liver Zn levels were found in OJ group (p < 0.05) compared with other groups. However, these differences reached to significant levels for Cu in serum and for Zn in lever. Higher serum copper levels were decreased, and lower liver Zn levels were increased by EA treatment in cholestatic rats (p < 0.05). Also, higher Cu/Zn ratio in OJ group was decreased by EA treatment both in liver (p < 0.05) and in serum (p < 0.05). Significantly higher serum bilirubin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase values were found in OJ and OJ + EA groups compared with the control and EA groups (p < 0.05). In conclusion, result of the current study indicated that ellagic acid has modulator effects on Cu and Zn levels in liver and serum of cholestatic rats.  相似文献   

8.
In 2005 and 2006, adult sockeye salmon (Oncorhynchus nerka) were captured en route to spawning grounds and placed in either a slow (∼ 0.1 m·s−1) or fast (∼0.4 m·s−1) water velocity treatment for 18 days in order to assess how migrational energy depletion during the final stages of maturation affected physiological condition and survival. Fish in the fast treatment utilized more energy than the slow treatment in 2005 (0.91 MJ kg−1 vs. 0.43 MJ kg−1; P = 0.010), and 2006 (0.72 MJ kg−1 vs. 0.37 MJ kg−1; P = 0.021). Non-treatment fish captured upon arrival at spawning grounds showed energy levels intermediate to the two treatments in 2005 and lower than both in 2006, suggesting that energy use during the treatments were within levels normally experienced by this population. No differences in survival were found between treatments (P > 0.05), although females had lower survival than males in both years (both P < 0.01). After 18 days, surviving fish from the fast treatment showed signs of elevated physiological stress relative to fish from the slow treatment. Specifically, plasma osmolality was lower in fast fish in 2005 (P < 0.001), as was plasma chloride in both years (both P < 0.02). In 2006, plasma lactate was higher (P = 0.014) in fast fish. Within the ranges of energetic depletion that were examined here, a more energy-intensive migration can have a substantial influence on the physiological condition and stress of adult sockeye salmon, but not on survival.  相似文献   

9.
The present study was to investigate the efficiency of maternal selenomethionine intake on growth performance, Se distribution, and antioxidant status of pig offspring by comparing with sodium selenite. A total of 12 sows (Landrace × Yorkshire) with same pregnancy were randomly divided into two groups; each group was replicated six times. These two groups received the same basal gestation and lactation diets containing 0.04 mg Se/kg, supplemented with 0.3 mg Se/kg sodium selenite and selenomethionine (i.e., seneno-dl-methylseleno), respectively. The feeding trial lasted for 60 days, with 32 and 28 days for gestation and lactation period, respectively. Compared with sodium selenite, maternal selenomethionine intake significantly (p < 0.05) increased the daily weight gain of piglet from birth to weaning. The Se concentration in the colostrum and milk and tissue Se content of piglets were significantly higher (p < 0.05) in the selenomethionine-treated group. The antioxidant status was greatly improved in piglets of selenomethionine-treated group and was illuminated by the increased total antioxidant capability, glutathione peroxidase, superoxide dismutase, and glutathione, and decreased the malondialdehyde level in the organs of piglets. The increased (p < 0.05) triiodothyronine (T3) and decreased (p < 0.05) thyroxine (T4) concentration indicated the improved protein synthesis and energy production in the selenomethionine-treated group. The increased (p < 0.05) pancreatic digestive enzymes of protease, amylase, and lipase activities indicated that maternal selenomethionine intake may have a positive effect on the degradation and absorption of nutrients in its piglets. In summary, we concluded that maternal selenomethionine intake increased Se deposition, antioxidant status, and nutrient use efficiency, thus providing an effective way to improve the growth performance of piglets from birth to weaning.  相似文献   

10.
The aim of the study was to investigate the effect of selenium on hepatic mitochondrial antioxidant capacity in ducklings administrated with aflatoxin B1 (AFB1). Ninety 7-day-old ducklings were randomly divided into three groups (groups I–III). Group I was used as a blank control. Group II was administered with AFB1 (0.1 mg/kg body weight). Group III was administered with AFB1 (0.1 mg/kg body weight) plus selenium (sodium selenite, 1 mg/kg body weight). All treatments were given once daily for 21 days. The results showed that the activities of mitochondrial superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) in group II ducklings significantly decreased when compared with group I (P < 0.01). Furthermore, the content of hepatic mitochondrial malondialdehyde (MDA) significantly increased (P < 0.01). However, the activities of hepatic mitochondrial SOD, CAT, GSH-Px, and GR in group III ducklings significantly increased when compared with group II (P < 0.05). In addition, the content of hepatic mitochondrial MDA significantly decreased (P < 0.01). These results revealed that AFB1 significantly induced hepatic mitochondrial antioxidant dysfunction. However, sodium selenite could significantly ameliorate the negative effect induced by AFB1.  相似文献   

11.
Three groups of specialist nectar-feeders covering a continuous size range from insects, birds and bats have evolved the ability for hovering flight. Among birds and bats these groups generally comprise small species, suggesting a relationship between hovering ability and size. In this study we established the scaling relationship of hovering power with body mass for nectar-feeding glossophagine bats (Phyllostomidae). Employing both standard and fast-response respirometry, we determined rates of gas exchange in Hylonycteris underwoodi (7 g) and Choeronycteris mexicana (13–18 g) during hover-feeding flights at an artificial flower that served as a respirometric mask to estimate metabolic power input. The O2 uptake rate ( o2) in ml g−1 h−1 (and derived power input) was 27.3 (1.12 W or 160 W kg−1) in 7-g Hylonycteris and 27.3 (2.63 W or 160 W kg−1) in 16.5-g Choeronycteris and thus consistent with measurements in 11.9-g Glossophagasoricina (158 W kg−1, Winter 1998). o2 at the onset of hovering was also used to estimate power during forward flight, because after a transition from level forward to hovering flight gas exchange rates initially still reflect forward flight rates. o2 during short hovering events (<1.5 s) was 19.0 ml g−1 h−1 (1.8 W) in 16-g Choeronycteris, which was not significantly different from a previous, indirect estimate of the cost of level forward flight (2.1 W, Winter and von Helversen 1998). Our estimates suggest that power input during hovering flight P h (W) increased with body mass M (kg) within 13–18-g Choeronycteris (n = 4) as P h  = 3544 (±2057 SE) M 1.76 (±0.21 SE) and between different glossophagine bat species (n = 3) as P h  = 128 (±2.4 SE) M 0.95 (±0.034 SE). The slopes of three scaling functions for flight power (hovering, level forward flight at intermediate speed and submaximal flight power) indicate that: 1. The relationship between flight power to flight speed may change with body mass in the 6–30-g bats from a J- towards a U-shaped curve. 2. A metabolic constraint (hovering flight power equal maximal flight power) may influence the upper size limit of 30–35 g for this group of flower specialists. Mass-specific power input (W kg−1) during hovering flight appeared constant with regard to body size (for the mass ranges considered), but differed significantly (P < 0.001) between groups. Group means were 393 W kg−1 (sphingid moths), 261 W kg−1 (hummingbirds) and 159 W kg−1 (glossophagine bats). Thus, glossophagine bats expend the least metabolic power per unit of body mass supported during hovering flight. At a metabolic power input of 1.1 W a glossophagine bat can generate the lift forces necessary for balancing 7 g against gravitation, whereas a hummingbird can support 4 g and a sphingid moth only 3 g of body mass with the same amount of metabolic energy. These differences in power input were not fully explained by differences in induced power output estimated from Rankine-Froude momentum-jet theory. Accepted: 10 November 1998  相似文献   

12.
Greenhouse experiments were conducted to study the permissible value of vanadium (V) based on the growth and physiological responses of green Chinese cabbage (Brassica chinensis L.), and effects of V on microbial biomass carbon (MBC) and enzyme activities in allitic udic ferrisols were also studied. The results showed that biomass of cabbage grown on soil treated with 133 mg V kg−1 significantly decreased by 25.1% compared with the control (P < 0.05). Vanadium concentrations in leaves and roots increased with increasing soil V concentration. Contents of vitamin C (Vc) increased by 10.3%, while that of soluble sugar in leaves significantly decreased by 54.0% when soil V concentration was 133 mg kg−1, respectively. The uptake of essential nutrient elements by cabbage was disturbed when soil V concentration exceeded 253 mg kg−1. Soil MBC was significantly stimulated by 15.5%, while dehydrogenase activity significantly decreased by 62.8% and urease activity slightly changed at treatment of 133 mg V kg−1 as compared with the control, respectively. Therefore, the permissible value of V in allitic udic ferrisols is proposed as 130 mg kg−1.  相似文献   

13.
Tree species and wood ash application in plantations of short-rotation woody crops (SRWC) may have important effects on the soil productive capacity through their influence on soil organic matter (SOM) and exchangeable cations. An experiment was conducted to assess changes in soil C and N contents and pH within the 0–50 cm depth, and exchangeable cation (Ca2+, Mg2+, K+, and Na+) and extractable acidity concentrations within the 0–10 cm depth. The effects of different species (European larch [Larix decidua P. Mill.], aspen [Populus tremula L. × Populus tremuloides Michx.], and four poplar [Populus spp.] clones) and wood ash applications (0, 9, and 18 Mg ha−1) on soil properties were evaluated, using a common garden experiment (N = 70 stands) over 7 years of management in Michigan’s Upper Peninsula. Soils were of the Onaway series (fine-loamy, mixed, active, frigid Inceptic Hapludalfs). The NM-6 poplar clone had the greatest soil C and N contents in almost all ash treatment levels. Soil C contents were 7.5, 19.4, and 10.7 Mg C ha−1 greater under the NM-6 poplar than under larch in the ash-free, medium-, and high-level plots, respectively. Within the surface layer, ash application increased soil C and N contents (P < 0.05) through the addition of about 0.7 Mg C ha−1 and 3 kg N ha−1 with the 9 Mg ha−1 ash application (twofold greater C and N amounts were added with the 18 Mg ha−1 application). During a decadal time scale, tree species had no effects—except for K+—on the concentrations of the exchangeable cations, pH, and extractable acidity. In contrast, ash application increased soil pH and the concentration of Ca2+ (P < 0.05), from 5.2 ± 0.4 cmolc kg−1 (ash-free plots) to 8.6 ± 0.4 cmolc kg−1 (high-level ash plots), and tended to increase the concentration of Mg2+ (P < 0.1), while extractable acidity was reduced (P < 0.05) from 5.6 ± 0.2 cmolc kg−1 (ash-free plots) to 3.7 ± 0.2 cmolc kg−1 (high-level plots). Wood ash application, within certain limits, not only had a beneficial effect on soil properties important to the long-term productivity of fast-growing plantations but also enhanced long-term soil C sequestration.  相似文献   

14.
This experiment was conducted to evaluate the effect of zinc, manganese, and copper sources (inorganic vs. organic) in the diet on laying performance and eggshell quality characteristics. One hundred and eighty Hy-Line W-36 layers at 38 weeks of age were allocated to 36-layer cages of five hens each. Each six cages were randomly assigned to one of the six experimental diets fed from 38 to 53 week of age. In three experimental treatments, the basal diet was supplemented with 65–75–7 or 65–75–7 or 40–40–7 mg/kg of Zn, Mn, and Cu, respectively, from their oxide or sulfate sources. Three other groups were fed diets supplemented with 20–20–3.5 or 40–40–7.5 or 60–60–10.5 mg/kg of organic forms of Zn, Mn, and Cu, respectively. Dietary treatments significantly did affect feed intake (P < 0.001), feed conversion ratio (P < 0.001) and percentage of broken eggs (P < 0.05). Substitution of Zn and Mn oxides (65 and 75 mg kg−1, respectively) with equal amounts of their sulfate forms significantly improved feed intake, feed conversion ratio, percentage of broken eggs, and Haugh Unit (P < 0.05). In addition, laying hens maintained their performance when substitution of Zn and Mn oxides and Cu sulfate (65, 75, and 7 mg kg−1, respectively) reduced up to 20, 20, and 3.5 mg kg−1 by amino acid complexes of the microelements. The results showed that a corn–soybean diet supplemented with the organic forms of Zn, Mn, and Cu at a dosage 50% to 75% lower than NRC recommendation is sufficient to maintain laying performance and can improve eggshell and albumen qualities of the egg in laying hens.  相似文献   

15.
Since there are no data about the protective role of selenium (Se) against cadmium (Cd)-induced oxidative damage in early life, we studied the effect of Se supplementation on antioxidative enzyme activity and lipid peroxidation (through thiobarbituric acid reactive substances; TBARS) in suckling Wistar rats exposed to Cd. Treated animals received either Se alone for 9 days (8 μmol, i.e., 0.6 mg Se as Na2SeO3 kg−1 b.w., daily, orally; Se group), Cd alone for 5 days (8 μmol, i.e., 0.9 mg Cd as CdCl2 kg−1 b.w., daily, orally; Cd group), or pre-treatment with Se for 4 days and then co-treatment with Cd for the following 5 days (Se + Cd group). Our results showed that selenium supplementation, with and without Cd, increased SOD activity in the brain and kidney, but not in the liver and GSH-Px activity across all tissues compared to control rats receiving distilled water. Relative to the Cd group, Se + Cd group had higher kidney and brain SOD and GSH-Px activity (but not the liver), while in the liver caused increased and in the brain decreased TBARS level. These results suggest that Se stimulates antioxidative enzymes in immature kidney and brain of Cd-exposed rats and could protect against oxidative damage.  相似文献   

16.
Thirty-two wether lambs of Tan sheep were randomly assigned into four dietary treatment groups (eight per group) for an 8-wk study and then fed a basal diet deficient in Se (0.06 mg/kg) or diets supplemented to provide 0.10 mg/kg Se from sodium selenite, selenized yeast, and selenium-enriched probiotics, respectively. Blood samples were collected at d 0, 28, and 56 of the experiment and tissue samples were collected at experiment termination. Tissue and blood Se concentrations, blood glutathione peroxidase (GSH-Px) activities, and plasma interleukin levels were analyzed. The results showed that the concentrations of Se in the kidney, liver, and muscle increased in all of the supplemented groups (p<0.01) compared with the control group. However, the Se concentrations in the kidney, liver, and muscle in the groups supplemented with Se yeast and Se-enriched probiotics were higher than those in the group supplemented with sodium selenite (p<0.01). The activities of GSH-Px and the concentrations of Se in blood also increased in all of the supplemented groups during the period of supplementation (p<0.01) compared with the control group. The activities of GSH-Px and the concentrations of Se in the whole blood of the lambs fed with selenized yeast and Se-enriched probiotics were higher than those of lambs fed with sodium selenite (p<0.01 or p<0.05). The concentrations of interleukin-1 and interleukin-2 in plasma significantly increased in all of the supplemented groups during the entire period of experiment (p<0.01) compared with the control group, but had no significant differences among all of the supplemented groups. In conclusion, a diet supplemented with Se for finishing lambs was able to increase the concentrations of Se in tissue and blood, activities of GSH-Px in blood, and levels of interleukins in plasma. Organic Se sources (selenized yeast and Se-enriched probiotics) were more effective than the inorganic Se source (sodium selenite) in increasing tissue and blood Se concentrations and blood GSH-Px activities of lambs. However, there were no significant differences in plasma interleukin levels of lambs between organic and inorganic Se sources.  相似文献   

17.
The study was conducted to investigate the effects of dietary maternal selenomethionine or sodium selenite supplementation on performance and selenium status of broiler breeders and their next generation. Two hundred and forty 39-week-old Lingnan yellow broiler breeders were allocated randomly into two treatments, each of which included three replicates of 40 birds. Pretreatment period was 2 weeks, and the experiment lasted 8 weeks. The groups were fed the same basal diet supplemented with 0.30 mg selenium/kg of sodium selenite or selenomethionine. After incubation, 180 chicks from the same parental treatment group were randomly divided into three replicates, with 60 birds per replicate. All the offspring were fed the same diet containing 0.04 mg selenium/kg, and the experiment also lasted 8 weeks. Birth rate was greater (p < 0.05) in hens fed with selenomethionine than that in hens fed with sodium selenite. The selenium concentration in serum, liver, kidney, and breast muscle of broiler breeders, selenium deposition in the yolk, and albumen and tissues' (liver, kidney, breast muscle) selenium concentrations of 1-day-old chicks were significantly (p < 0.01) increased by maternal selenomethionine supplementation compared with maternal sodium selenite supplementation. The antioxidant status of 1-day-old chicks was greatly improved by maternal selenomethionine intake in comparison with maternal sodium selenite intake and was evidenced by the increased glutathione peroxidase activity in breast muscle (p < 0.05), superoxide dismutase activity in breast muscle and kidney (p < 0.05), glutathione concentration in kidney (p < 0.01), total antioxidant capability in breast muscle and liver (p < 0.05), and decreased malondialdehyde concentration in liver and pancreas (p < 0.05) of 1-day-old chicks. Feed utilization was better (p < 0.05), and mortality was lower (p < 0.05) in the progeny from hens fed with selenomethionine throughout the 8-week growing period compared with those from hens fed with sodium selenite. In summary, we concluded that maternal selenomethionine supplementation increased birth rate and Se deposition in serum and tissues of broiler breeders as well as in egg yolk and egg albumen more than maternal sodium selenite supplementation. Furthermore, maternal selenomethionine intake was also superior to maternal sodium selenite intake in improving the tissues Se deposition and antioxidant status of 1-day-old chicks and increasing the performance of the progeny during 8 weeks of post-hatch life.  相似文献   

18.
A feeding experiment was carried out to compare the effects of supplementing a poultry meal-based diet with selenium as sodium selenite or selenium yeast on broiler chickens. Three groups with three replicates of broiler chickens (mean weight 710 ± 5.3 g) were given a basal diet either unsupplemented (control) or supplemented with 0.2 mg Se kg−1 as sodium selenite (trial 1) or selenium yeast (trial 2) respectively, for 21 days. There was significant difference (P<0.05) in Feed Conversion Ratio (FCR) of trials 1 and 2 compared with the control. However, there were no significant differences (P>0.05) in FCR between trials 1 and 2. Final weight, survival rate and Daily Gain (DG) were not affected by the dietary Se source. Chickens fed the basal diet showed lower (P<0.05) selenium content in muscle, kidney, liver and pancreas compared to that fed selenium supplements (trials 1 and 2). Furthermore, trial 2 showed the highest value (P<0.05) among these treatments. However, there was no significant difference (P>0.05) in muscle selenium content of chickens between trials 1 and 2. Glutathione peroxidase (GSH-Px) activities in broiler chickens plasma and liver of all selenium treatment groups (trials 1 and 2) were significantly different (P<0.05) from that of the control. The GSH-Px activity in plasma was higher (P<0.05) in trial 2 compared with trial 1 and the control. However, there was no difference (P>0.05) in hepatic glutathione peroxidase between trials 1 and 2 although the average value of GSH-Px activity in trial 2 presented the trend of increase.  相似文献   

19.
This study was conducted to investigate the effects of different sources of dietary selenium (Se) supplementation on growth performance, meat quality, Se deposition, and antioxidant property in broilers. A total of 600 one-day-old Ross 308 broilers with an average body weight (BW) of 44.30 ± 0.49 g were randomly allotted to three treatments, each of which included five replicates of 40 birds. These three groups received the same basal diet containing 0.04 mg Se/kg, supplemented with 0.15 mg Se/kg from sodium selenite (SS) or from l-selenomethionine (l-Se-methionine (Met)) or from d-selenomethionine (d-Se-Met). The experiment lasted 42 days. Both Se source and time significantly influenced (p < 0.01) drip loss of breast muscle. Supplementation with l-Se-Met and d-Se-Met were more effective (p < 0.05) in decreasing drip loss than SS. Besides, the pH value of breast muscle was also significantly influenced (p < 0.05) by time. The SS-supplemented diet increased more (p < 0.05) liver, kidney, and pancreas glutathione peroxidase (GSH-Px) activities than the d-Se-Met-supplemented diet. In addition, l-Se-Met increased more (p < 0.01) liver and pancreas GSH-Px activities than d-Se-Met. The antioxidant status was greatly improved in broilers of l-Se-Met-treated group in comparison with the SS-treated group and was illuminated by the increased glutathione (GSH) concentration in serum, liver, and breast muscle (p < 0.05); superoxide dismutase (SOD) activity in liver (p < 0.01); total antioxidant capability (T-AOC) in kidney, pancreas, and breast muscle (p < 0.05) and decreased malondialdehyde (MDA) concentration in kidney and breast muscle (p < 0.05) of broilers. Besides, supplementation with d-Se-Met was more effective (p < 0.01) in increasing serum GSH concentration and decreasing breast muscle MDA concentration than SS. l-Selenomethionine supplementation significantly increased GSH concentration in liver and breast muscle (p < 0.05); SOD activity in liver (p < 0.01); and T-AOC in liver, pancreas, and breast muscle (p < 0.05) of broilers, compared with broilers fed d-Se-Met diet. The addition of l-Se-Met and d-Se-Met increased (p < 0.01) Se concentration in serum and different organs studied of broilers in comparision with broilers fed SS diet. Therefore, dietary l-Se-Met and d-Se-Met supplementation could improve antioxidant capability and Se deposition in serum and tissues and reduce drip loss of breast muscle in broilers compared with SS. Besides, l-Se-Met is more effective than d-Se-Met in improving antioxidant status in broilers.  相似文献   

20.
The aim of this study was to find out whether a low-carbohydrate diet (L-CHO) affects: (1) the capacity for all-out anaerobic exercise, and (2) hormonal and metabolic responses to this type of exercise. To this purpose, eight healthy subjects underwent a 30-s bicycle Wingate test preceded by either 3 days of a controlled mixed diet (130 kJ/kg of body mass daily, 50% carbohydrate, 30% fat, 20% protein) or 3 days of an isoenergetic L-CHO diet (up to 5% carbohydrate, 50% fat, 45% protein) in a randomized order. Before and during 1 h after the exercise venous blood samples were taken for measurement of blood lactate (LA), β-hydroxybutyrate (β-HB), glucose, adrenaline (A), noradrenaline (NA) and insulin levels. Oxygen consumption (O2) was also determined. It was found that the L-CHO diet diminished the mean power output during the 30-s exercise bout [533 (7) W vs 581 (7) W, P < 0.05] without changing the maximal power attained during the first or second 5-s interval of the exercise. In comparison with the data obtained after the consumption of a mixed diet, after the consumption of a L-CHO diet resting plasma concentrations of β-HB [2.38 (0.18) vs 0.23 (0.01) mmol · l−1, P < 0.001] and NA [4.81 (0.68) vs 2.2 (0.31) nmol · l−1, P < 0.05] were higher, while glucose [4.6 (0.1) vs 5.7 (0.2) mmol · l−1, P < 0.05] and insulin concentrations [11.9 (0.9) vs 21.8 (1.8) mU · l−1] were lower. The 1-h post-exercise excess of O2 [9.1 (0.25) vs 10.6 (0.25) l, P < 0.05], and blood LA measured 3 min after the exercise [9.5 (0.4) vs 10.6 (0.5) mmol · l−1, P < 0.05] were lower following the L-CHO treatment, whilst plasma NA and A concentrations reached higher values [2.24 (0.40) vs 1.21 (0.13) nmol · l−1 and 14.30 (1.41) vs 8.20 (1.31) nmol · l−1, P < 0.01, respectively]. In subjects on the L-CHO diet, the plasma β-HB concentration decreased quickly after exercise, attaining ≈30% of the pre-exercise value within 60 min, while insulin and glucose levels were elevated. The main conclusions of this study are: (1) a L-CHO diet is detrimental to anaerobic work capacity, possibly because of a reduced muscle glycogen store and decreased rate of glycolysis; (2) reduced carbohydrate intake for 3 days enhances activity of the sympathoadrenal system at rest and after exercise. Accepted: 31 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号