首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human DNA probe specific for the superoxide dismutase gene was used to identify the corresponding mouse gene. Under the chosen hybridizing conditions, the probe detected DNA fragments most likely carrying the mouse Sod-2 gene. Mapping studies revealed that the Sod-2 gene resides in the proximal inversion of the t complex on mouse chromosome 17. All complete t haplotypes tested showed restriction fragment length polymorphism which is distinct from that found in all wild-type chromosomes tested. The Sod-2 locus maps in the same region as some of the loci that influence segregation of t chromosomes in male gametes. The possibility that the Sod-2 locus is related to some of the t-complex distorter or responder loci is discussed. The data indicate that the human homolog of the mouse t complex has split into two regions, the distal region remaining on the p arm of human chromosome 6, while the proximal region has been transposed to the telomeric region of this chromosome's q arm.  相似文献   

2.
The human factor H-related gene 2 (FHR2) encodes a serum protein structurally and immunologically related to complement factor H. We describe the isolation and genomic organization of the human FHR2 gene from a yeast artificial chromosome library. The FHR2 gene is organized in five exosn and span about 7 kilobases (kb) of human genomic DNA. A comparison with the corresponding cDNA sequence (clone DDESK59) shows that the analyzed FHR2 gene has a deleted region within exon 4. A new splice acceptor site created in the truncated exon indicates that the analyzed gene could be translated to a truncated protein. Further, we demonstrate that the genes for FHR2 and subunit of coagulation factor XIII are located in the same 165 kb YAC DNA. Thus, the three structurally related genes FXIIIb, FHR2, and factor H are linked on human chromosome 1 in the regulators of complement activiation (RCA) gene cluster. The physical linkage of the FHR2 and the factor H genes provides additional evidence for a close relatedness of complement factor H and the factor H-related proteins. The linkage and the almost exclusive organization in short consensus repeat-containing domains indicates a close evolutionary relationship of the FXIIIb, FHR2, and factor H genes.The nucleotide sequence data reported in this paper have been submitted to the EMBL and GenBank nucleotide sequence databases and have been assigned the accession number X86564 (exon 1), X86565 (exon 2), X86566 (exon 3 and 4), and X86567 (exon 5)  相似文献   

3.
《Epigenetics》2013,8(12):1641-1647
Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs.  相似文献   

4.
5.
6.
The human BARX2 gene encodes a homeodomain-containing protein of 254 amino acids, which binds optimally to the DNA consensus sequence YYTAATGRTTTTY. BARX2 is highly expressed in adult salivary gland and is expressed at lower levels in other tissues, including mammary gland, kidney, and placenta. The BARX2 gene consists of four exons, and is located on human chromosome 11q25. This chromosomal location is within the minimal deletion region for Jacobsen syndrome, a syndrome including craniosynostosis and other developmental abnormalities. This chromosomal location, along with the reported expression of murine barx2 in craniofacial development, suggests that BARX2 may be causally involved in the craniofacial abnormalities in Jacobsen syndrome.  相似文献   

7.
Late-infantile ceroid-lipofuscinosis (CLN2) is an autosomal recessively inherited, neurodegenerative disease in humans. The CLN2 locus has been mapped to Chromosome (Chr) 11p15, and its sequence and genomic organization have recently been reported. In the present study, the cDNA sequence, exon/intron organization, and chromosomal localization of a mouse ortholog of the CLN2 gene are described. The mouse cDNA contains an open reading frame that predicts a protein product of 562 amino acids. The mouse and human coding regions are 86% and 88% identical at the nucleic acid and amino acid levels, respectively. One less codon appears in the mouse cDNA when compared with the human ortholog. The mouse gene (Cln2) spans more than 6 kb and consists of 13 exons separated by introns ranging in size from 111 to 1259 bp. Length polymorphism in an (AC)n microsatellite in intron 3 of the mouse Cln2 gene was used to perform segregation analysis with The Jackson Laboratory DNA Panel Mapping Resource. On the basis of this analysis, the Cln2 gene was localized to a region of mouse Chr 7 that corresponds to human Chr 11p15. Characterization of the mouse Cln2 gene will facilitate generation of a mouse model for late-infantile ceroid-lipofuscinosis by gene targeting and identification of functionally important regions of the Cln2 protein. Received: 25 May 1999 / Accepted: 22 July 1999  相似文献   

8.
9.
10.
By using primers synthesized on the basis of the bovine βA2 crystallin gene sequence, we amplified exons 5 and 6 of the human gene (CRYBA2). CRYBA2 was assigned to human chromosome 2 by concordance analysis in human × rodent somatic cell hybrids using the amplified PCR products as probe. Regional localization to 2q34-q36 was established by hybridizing the CRYBA2 probe to microcell and radiation hybrids containing defined fragments of chromosome 2 as the only human contribution. The CRYBA2 probe was also used to localize, by interspecific backcross mapping, the mouse gene (Cryba2) to the central portion of chromosome 1 in a region of known human chromosome 2 homology. Finally, we demonstrate that in both species the βA2 crystallin gene is linked but separable from the γA crystallin gene. The βA2 crystallin gene is a candidate gene for human and mouse hereditary cataract.  相似文献   

11.
The Chinese hamster ovary (CHO-K1) cell mutant XRS-6 is defective in rejoining of DNA double-strand breaks and is hypersensitive to X-rays, γ-rays, and bleomycin. Radiation resistance or sensitivity of somatic cell hybrids constructed from the fusion of XRS-6 cells with primary human fibroblasts strongly correlated with the retention of human chromosome 2 isozyme and molecular markers. Discordancies between some chromosome 2 markers and the radiation resistance phenotype in some of the hybrid cells suggested the location of the X-ray repair cross complementing 5 (XRCC5) gene on the p arm of chromosome 2. Introduction of human chromosome 2 by microcell-mediated chromosome transfer into the radiation-sensitive XRS-6 cells resulted in hybrid cells in which the radiation sensitivity was complemented. The chromosome 2p origin of the complementing human DNA in the microcell hybrids was supported by fluorescent in situ hybridization analysis of human metaphases using human DNA amplified from the hybrids by inter-Alu-PCR as chromosome-painting probes. XRCC5 is therefore provisionally assigned to human chromosome 2p.  相似文献   

12.
Summary The cdc2 cell cycle control gene of Schizosaccharomyces pombe has been identified on a 3 kb DNA fragment. The gene is unique in the genome and is located near to a 5S ribosomal RNA gene. When a plasmid containing DNA sequences adjacent to the cdc2 gene is transformed into certain temperature sensitive cdc2 mutants it allows colony formation at the restrictive temperature. This was shown to be due to the plasmid interacting with the cdc2 chromosomal region and picking up the temperature sensitive allele of the cdc2 gene. Over expression of these temperature sensitive alleles presumably leads to sufficient activity of the thermolabile product to allow normal cdc2 function. In this way two cdc2 alleles have been cloned.  相似文献   

13.
8-Hydroxyguanine (7,8-dihydro-8-oxoguanine: oh8Gua) is a damaged form of guanine induced by oxygen-free radicals and causes GC to TA transversions. Previously we isolated the hOGG1 gene, a human homolog of the yeast OGG1 gene, which encodes a DNA glycosylase and lyase to excise oh8Gua in DNA. In this study, we isolated a mouse homolog (Ogg1) of the OGG1 gene, characterized oh8Gua-specific DNA glycosylase/AP lyase activities of its product, and determined chromosomal localization and exon-intron organization of this gene. A predicted protein possessed five domains homologous to human and yeast OGG1 proteins. Helix-hairpin-helix and C2H2 zinc finger-like DNA-binding motifs found in human and yeast OGG1 proteins were also retained in mouse Ogg1 protein. The properties of a GST fusion protein were identical to human and yeast OGG1 proteins in glycosylase/lyase activities, their substrate specificities, and suppressive activities against the spontaneous mutagenesis of an Escherichia coli mutM mutY double mutant. The mouse Ogg1 gene was mapped to Chromosome (Chr) 6, and consisted of 7 exons approximately 6 kb long. Two DNA-binding motifs were encoded in exons 4 through 5. These data will facilitate the investigation of the OGG1 gene to elucidate the relationship between oxidative DNA damage and carcinogenesis. Received: 17 July 1997 / Accepted: 15 September 1997  相似文献   

14.
The humanPWP2gene is the human homologue of the yeast periodic tryptophan protein 2 (PWP2) gene and is a member of the gene family that contains tryptophan-aspartate (WD) repeats. Genomic sequencing revealed that the humanPWP2gene consists of 21 exons spanning approximately 24 kb and locates just between the two genes EHOC-1 and KNP-I and distal to aNotI site of LJ104 (D21S1460) on chromosome 21q22.3. Analysis of the 5′-flanking DNA sequence revealed that the upstream region of thePWP2gene is associated with a CpG island containing theNotI site of LJ104. SincePWP2is considered to be a candidate for genetic disorders mapped in the 21q22.3 region, the information including nucleotide sequence and genomic organization of thePWP2gene should be invaluable for the mutation analysis of the corresponding genetic disorders.  相似文献   

15.
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri × X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, χ2 = 35.37, P < 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.  相似文献   

16.
We have determined the canine and feline N-, K-, and H-ras gene sequences from position +23 to +270 covering exons I and II which contain the mutational hot spot codons 12, 13, and 61. The results were used to assess the degree of similarity between ras gene DNA regions containing the critical domains affected in neoplastic disorders in different mammalian species. The comparative analyses performed included human, canine, feline, murine, rattine, and, whenever possible, bovine, leporine (rabbit), porcelline (guinea pig), and mesocricetine (hamster) ras gene sequences within the region of interest. Comparison of feline and canine nucleotide sequences with the corresponding regions in human DNA revealed a sequence similarity greater than 85% to the human sequence. Contemporaneous analysis of previously published ras DNA sequences from other mammalian species showed a similar degree of homology to human DNA. Most nucleotide differences observed represented synonymous changes without effect on the amino acid sequence of the respective proteins. For assessment of the phylogenetic evolution of ras gene family, a maximum parsimony dendrogram based on multiple sequence alignment of the common region of exons I and II in the N-, K-, and H-ras genes was constructed. Interestingly, a higher substitution rate among the H-ras genes became apparent, indicating accelerated sequence evolution within this particular clade. The most parsimonious tree clearly shows that the duplications giving rise to the three ras genes must have occurred before the mammalian radiation. Received: 23 July 1997 / Accepted: 30 October 1997  相似文献   

17.
Fanconi anemia (FA) is an autosomal recessive disease characterized by bone-marrow failure, congenital abnormalities, and cancer susceptibility. There are 11 FA complementation groups in human where 8 genes have been identified. We found that FancD2 is conserved in evolution and present in the genome of the nematode Caenorhabditis elegans. The gene Y41E3.9 (CeFancD2) encodes a structural ortholog of human FANCD2 and is composed of 10 predicted exons. Our analysis showed that exons 6 and 7 were absent from a CeFancD2 EST suggesting the presence of a splice variant. In an attempt to characterize its role in DNA damage, we depleted worms of CeFANCD2 using RNAi. When the CeFANCD2(RNAi) worms were treated with a crosslinking agent, a significant drop in the progeny survival was noted. These worms were also sensitive, although to a lesser extent, to ionizing radiation (IR). Therefore, these data support an important role for CeFANCD2 in DNA damage response as for its human counterpart. The data also support the usefulness of C. elegans to study the Fanconi anemia pathway, and emphasize the biological importance of FANCD2 in DNA damage response throughout evolution.  相似文献   

18.
19.
The Rb1 gene has been implicated with retinoblastoma and is located on human Chromosome (Chr) 13q14.2. A unique sequence human Rb1 cosmid DNA probe has been used to localize this region on apes' Chr 14 by the FISH technique. The conservation of the Rb1 gene in higher primates at the corresponding equivalent chromosome locus (14q14) of the human may serve as a phylogenetic marker to further trace the evolutionary pathway of human descent. Received: 2 February 1996 / Accepted: 9 April 1996  相似文献   

20.
The p53 protein and its negative regulator the ubiquitin E3 ligase Mdm2 have been shown to be conserved from the Placazoan to man. In common with D.melanogaster and C.elegans, there is a single copy of the p53 gene in T.adhaerens, while in the vertebrates three p53-like genes can be found: p53 , p63 and p73. The Mdm2 gene is not present within the fully sequenced and highly annotated genomes of C.elegans and D.melanogaster. However, it is present in the Placazoan and the presence of multiple distinct p53 genes in the Sea anemone N.vectensis led us to examine the genomes of other phyla for p53 and Mdm2-like genes. We report here the discovery of an Mdm2-like gene and two distinct p53 like genes in the Arachnid Ioxodes scapularis (Northern Deer Tick). The two predicted Deer Tick p53 proteins are much more highly related to the human p53 protein in sequence than are the fruit fly and nematode proteins. One of the Deer tick genes encodes a p53 protein that is initiated within the DNA binding domain of p53 and shows remarkable homology to the newly described N-terminally truncated delta isoforms of human and zebrafish p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号