首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ubiquinone-10 can be extracted from lyophilized chromatophores of Rhodobacter sphaeroides (previously called Rhodopseudomonas sphaeroides) without significant losses in other components of the electron-transfer chain or irreversible damages in the membrane structure. The pool of ubiquinone can be restored with exogenous UQ-10 to sizes larger than the ones in unextracted membranes. The decrease in the pool size has marked effects on the kinetics of reduction of cytochrome b-561 induced by a single flash of light and measured in the presence of antimycin. The initial rate of reduction, which in unextracted preparations increases on reduction of the suspension over the Eh range between 170 and 100 mV (pH 7), is also stimulated in partially UQ-depleted membranes, although at more negative Eh's. When the UQ pool is completely extracted the rate of cytochrome (Cyt) b-561 reduction is low and unaffected by the redox potential. In membranes enriched in UQ-10 above the physiological level the titration curve of the rate of Cyt b-561 reduction is displaced to Eh values more positive than in controls. This effect is saturated when the size of the UQ pool is about 2-3 times larger than the native one. The reduction of Cyt b-561 always occurs a short time after the flash is fired; also the duration of this lag is dependent on Eh and on the size of the UQ pool. A decrease or an increase in the pool size causes a displacement of the titration curve of the lag to more negative or to more positive Eh's, respectively. Similarly, the lag becomes Eh independent and markedly longer than in controls when the pool is completely extracted. These results demonstrate that the rate of turnover of the ubiquinol oxidizing site in the b-c1 complex depends on the actual concentration of ubiquinol present in the membrane and that ubiquinol from the pool is oxidized at this site with a collisional mechanism. Kinetic analysis of the data indicates that this reaction obeys a Michaelis-Menten type equation, with a Km of 3-5 ubiquinol molecules per reaction center.  相似文献   

2.
A non-photosynthetic mutant (Ps-) of Rhodopseudomonas capsulata, designated R126, was analyzed for a defect in the cyclic electron transfer system. Compared to a Ps+ strain MR126, the mutant was shown to have a full complement of electron transfer components (reaction centers, ubiquinone-10, cytochromes b, c1, and c2, the Rieske 2-iron, 2-sulfur (Rieske FeS) center, and the antimycin-sensitive semiquinone). Functionally, mutant R126 failed to catalyze complete cytochrome c1 + c2 re-reduction or cytochrome b reduction following a short (10 microseconds) flash of actinic light. Evidence (from flash-induced carotenoid band shift) was characteristic of inhibition of electron transfer proximal to cytochrome c1 of the ubiquinol-cytochrome c2 oxidoreductase. Three lines of evidence indicate that the lesion of R126 disrupts electron transfer from quinol to Rieske FeS: 1) the degree of cytochrome c1 + c2 re-reduction following a flash is indicative of electron transfer from Rieske FeS to cytochrome c1 + c2 without redox equilibration with an additional electron from a quinol; 2) inhibitors that act at the Qz site and raise the Rieske FeS midpoint redox potential (Em), namely 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole or 3-alkyl-2-hydroxy-1,4-napthoquinone, have no effect on cytochrome c1 + c2 oxidation in R126; 3) the Rieske FeS center, although it exhibits normal redox behavior, is unable to report the redox state of the quinone pool, as metered by its EPR line shape properties. Flash-induced proton binding in R126 is indicative of normal functional primary (QA) and secondary (QB) electron acceptor activity of the photosynthetic reaction center. The Qc functional site of cytochrome bc1 is intact in R126 as measured by the existence of antimycin-sensitive, flash-induced cytochrome b reduction.  相似文献   

3.
The reduction of duroquinone (DQ) and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB) by NADH and ethanol was investigated in intact yeast mitochondria with good respiratory control ratios. In these mitochondria, exogenous NADH is oxidized by the NADH dehydrogenase localized on the outer surface of the inner membrane, whereas the NADH produced by ethanol oxidation in the mitochondrial matrix is oxidized by the NADH dehydrogenase localized on the inner surface of the inner membrane. The reduction of DQ by ethanol was inhibited 86% by myxothiazol; however, the reduction of DQ by NADH was inhibited 18% by myxothiazol, suggesting that protein-protein interactions between the internal (but not the external) NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase (the cytochrome bc1 complex) are involved in the reduction of DQ by NADH. The reduction of DQ and DB by NADH and ethanol was also investigated in mutants of yeast lacking cytochrome b, the iron-sulfur protein, and ubiquinone. The reduction of both quinone analogues by exogenous NADH was reduced to levels that were 10 to 20% of those observed in wild-type mitochondria; however, the rate of their reduction by ethanol in the mutants was equal to or greater than that observed in the wild-type mitochondria. Furthermore, the reduction of DQ in the cytochrome b and iron-sulfur protein lacking mitochondria was myxothiazol sensitive, suggesting that neither of these proteins is an essential binding site for myxothiazol. The mitochondria from the three mutants also contained significant amounts of antimycin- and myxothiazol-insensitive NADH:cytochrome c reductase activity, but had no detectable succinate:cytochrome c reductase activity. These results suggest that the mutants lacking a functional cytochrome bc1 complex have adapted to oxidize NADH.  相似文献   

4.
Kinetic microplate-based assays for both mitochondrial NADH:ubiquinone oxidoreductase (complex I) and succinate:cytochrome c oxidoreductase using insect submitochondrial particles as the source of the enzyme activities have been developed. These assays have been used to design high-throughput screens for inhibitors of these mitochondrial electron transfer activities to assess their intrinsic in vitro efficacies as potential pesticides. These methods can be used to test up to 60 compounds per day without the use of automated sample handling and diluting technology. The accuracy, specificity, and reproducibility of the microplate methods compared well with conventional spectrophotometer-based assays.  相似文献   

5.
Bovine heart ubiquinol: cytochrome c oxidoreductase in Triton X-100 is split with guanidine into a number of fractions. A new method for measuring antimycin binding is developed using extraction with pentanol of the reversibly bound antimycin. By this method and the normal titration method, antimycin-binding capacity is found in a fraction containing a small subunit with a molecular mass of about 12000. This polypeptide was associated with cytochrome c1 but is probably not the 'hinge protein'. Fractions that contain cytochrome b did not show binding by the pentanol-extraction method.  相似文献   

6.
The ubiquinone complement of Rhodobacter capsulatus chromatophore membranes has been characterized by its isooctane solvent extractability and electrochemistry; we find that the main ubiquinone pool (Qpool) amounts to about 80% of the total ubiquinone and has an Em7 value close to 90 mV. To investigate the interactions of ubiquinone with the cyt bc1 complex, we have examined the distinctive EPR line shapes of the [2Fe-2S] cluster of the cyt bc1 complex when the Qpool-cyt bc1 complex interactions are modulated by changing the numbers of Q or QH2 present (by solvent extraction and reconstitution), by the exposure of the [2Fe-2S] to the Qpool in different redox states, by the presence of inhibitors specific for the Qo site (myxothiazol and stigmatellin) and Qi site (antimycin), and by site-specific mutations of side chains of the cyt b polypeptide (mutants F144L and F144G) previously identified as important for Qo site structure. Evidence suggests that the Qo site can accommodate two ubiquinone molecules. One (designated Qos) is bound relatively strongly and is second only to the ubiquinone of the QA site of the reaction center in its resistance to solvent extraction. In this strong interaction, the Qo site binds Q and QH2 with approximately equal affinities. Their bound states are distinguished by their effects on the [2Fe-2S] cluster spectral feature at gx at 1.783 (Q) and gx at 1.777 (QH2); titration of the line-shape change reveals an Em7 value of approximately 95 mV. The other molecule (Qow) is bound more weakly, in the same range as the ubiquinone of the QB site of the reaction center. Again, the affinities of the Q form (gx at 1.800) and QH2 form (gx at 1.777) are nearly equal, and the Em7 value measured is approximately 80 mV. These results are discussed in terms of earlier EPR analyses of the cyt bc1 complexes of other systems. A Qo site double-occupancy model is considered that builds on the previous model based on Qo site mutants [Robertson, D. E., Daldal, F.,& Dutton, P. L. (1990) Biochemistry 29, 11249-11260] and includes the recent suggestion that two of the [2F3-2S] cluster ligands of the R. capsulatus cyt bc1 complex are histidines [Gurbiel, R. J. Ohnishi, T., Robertson, D. E. Daldal, F., & Hoffman, B. M. (1991) Biochemistry 30, 11579-11584]. We speculate that the cyt bc1 complex complexes a full enzymatic turnover without necessary exchange of ubiquinone with the Qpool.  相似文献   

7.
Cytochrome b-561 of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides is reduced after flash illumination in the presence of myxothiazol in an antimycin-sensitive reaction. Flash-induced reduction was observed over the redox range in which cytochrome b-561 and the Q-pool are both oxidized before the flash. The extent of reduction increased with increasing pH, and was maximal at pH greater than 10.0 where the extent approached that observed in the presence of antimycin following a group of flashes. Reduction of cytochrome b-561 in the presence of myxothiazol showed a lag of approximately 1 ms after the flash, followed by reduction with t 1/2 approximately 6 ms; by analogy with the similar kinetics of the quinol oxidase site, we suggest that the rate is determined by collision with the QH2 produced in the pool on flash excitation.  相似文献   

8.
The antimycin-sensitive ubisemiquinone radical (QC) of the ubiquinol-cytochrome c oxidoreductase of submitochondrial particles and chromatophores of Rhodopseudomonas sphaeroides Ga has been studied by a combination of redox potentiometry and EPR spectroscopy. This g = 2.005 radical signal appears at physiological pH values and increases in intensity with increasing pH up to pH 7.6 in submitochondrial particles and pH 9.0 in R. sphaeroides after which its intensity remains unchanged. The Em7 (ubiquinone/quinol) of the signal, estimated from redox titration data is 80 mV for submitochondrial particles, and 150 mV in chromatophores. Each of these values is higher than that of the quinone pool by 20 mV in submitochondrial particles and 60 mV in R. sphaeroides. This indicates that the quinone at the binding site is out of equilibrium with the pool, and that binding site preferentially binds quinol over quinone. Analysis of the shapes of the semiquinone titration curves, taken together with the midpoint elevation, indicates a quinone-binding site: cytochrome c1 stoichiometry of 1:1 in both submitochondrial particles and chromatophores. At its maximal intensity, the semiquinone concentration at the binding site is 0.26 in submitochondrial particles (greater than pH 7.6) and 0.4 in chromatophores (greater than pH 9.0). In both systems, the midpoint of the ubiquinone/ubisemiquinone couple is constant as the pH is raised up to the pH of maximal semiquinone formation whereafter it becomes more negative at the rate of -60 mV/pH unit. The midpoint of the ubisemiquinone/quinol couple, on the other hand, varies by -120 mV/pH unit at pH values up to the transition pH, after which it, too, changes by -60 mV/pH unit. This seemingly anomalous behavior may be explained by invoking a protonated group at or near the quinone-binding site whose pK corresponds to the pH transition point in the quinone/semiquinone/quinol redox chemistry when the site is free or when quinone or quinol occupies the site. This pK is elevated to at least pH 9.0 in submitochondrial particles and 10.5 in R. sphaeroides when semiquinone is bound to the site.  相似文献   

9.
The electron transfer from ubiquinol-2 to ferricytochrome c mediated by ubiquinol:cytochrome c oxidoreductase [E.C. 1.10.2.2] purified from beef heart mitochondria, which contained one equivalent of ubiquinone-10 (Q10), was investigated under initial steady-state conditions. The Q10-depleted enzyme was as active as the Q10-containing one. Double reciprocal plots for the initial steady-state rate versus one of the two substrates at various fixed levels of the other substrate gave parallel straight lines in the absence of any product. Intersecting straight lines were obtained in the presence of a constant level of one of the products, ferrocytochrome c. The other product, ubiquinone-2, did not show any significant effect on the enzymic reaction. Ferrocytochrome c non-competitively inhibited the enzymic reaction against either ubiquinol-2 or ferricytochrome c. These results indicate a Hexa-Uni ping-pong mechanism with one ubiquinol-2 and two ferricytochrome c molecules as the substrates, which involves the irreversible release of ubiquinone-2 as the first product and the irreversible isomerization between the release of the first ferrocytochrome c and the binding of the second ferricytochrome c. Considering the cyclic electron transfer reaction mechanism, this scheme suggests that the binding of quinone or quinol to the enzyme and electron transfer between the iron-sulfur center and cytochrome c1 are rigorously controlled by the electron distribution within the enzyme.  相似文献   

10.
Ubiquinol-cytochrome c reductase (Complex III), cytochrome c and cytochrome c oxidase can be combined to reconstitute antimycin-sensitive ubiquinol oxidase activity. In 25 mM-acetate/Tris, pH 7.8, cytochrome c binds at high-affinity sites (KD = 0.1 microM) and low-affinity sites (KD approx. 10 microM). Quinol oxidase activity is 50% of maximal activity when cytochrome c is bound to only 25% of the high affinity sites. The other 50% of activity seems to be due to cytochrome c bound at low-affinity sites. Reconstitution in the presence of soya-bean phospholipids prevents aggregation of cytochrome c oxidase and gives rise to much higher rates of quinol oxidase. The cytochrome c dependence was unaltered. Antimycin curves have the same shape regardless of lipid/protein ratio, Complex III/cytochrome c oxidase ratio or cytochrome c concentration. Proposals on the nature of the interaction between Complex III, cytochrome c and cytochrome c oxidase are considered in the light of these results.  相似文献   

11.
1. The NADH-ubiquinone oxidoreductase complex (Complex I) and the ubiquinol-cytochrome c oxidoreductase complex (Complex III) combine in a 1:1 molar ratio to give NADH-cytochrome c oxidoreductase (Complex I-Complex III). 2. Experiments on the inhibition of the NADH-cytochrome c oxidoreductase activity of mixtures of Complexes I and III by rotenone and antimycin indicate that electron transfer between a unit of Complex I-Complex III and extra molecules of Complexes I or III does not contribute to the overall rate of cytochrome c reduction. 3. The reduction by NADH of the cytochrome b of mixtures of Complexes I and III is biphasic. The extents of the fast and slow phases of reduction are determined by the proportion of the total Complex III specifically associated with Complex I. 4. Activation-energy measurements suggest that the structural features of the Complex I-Complex III unit promote oxidoreduction of endogenous ubiquinone-10.  相似文献   

12.
The transdielectric charge separation reaction catalyzed by the ubiquinol-cytochrome c2 oxidoreductase is achieved in two fractional steps. We present a detailed analysis which addresses the nature of the charge transferred, the redox groups directly involved in charge separation and the contributions of each to the full charge separation catalyzed by the enzyme. Accounting for light saturation effects, reaction centers unconnected to cytochrome c2 and the fraction of total cytochrome bc1 turning over per flash permits detailed quantitation of: (1) the red carotenoid bandshift associated with electron transfer between ubiquinol at site Qz and the high- (2Fe2S center, cytochrome c1) and low-potential (cytochrome bL, cytochrome bH) components of cytochrome bc1; (2) the blue bandshift accompanying reduction of cytochrome bH by ubiquinol via site Qc (the reverse of the physiological reaction); and (3) the effect of delta psi on the Qc-cytochrome bH redox equilibrium. Studies were performed at pH values above and below the redox-linked pK values of the redox centers known to be involved in each reaction at equilibrium. The conclusions of this study may be summarized as follows: (1) there is no transdielectric charge separation apparent in the redox reactions between Qz and cytochrome bL, 2Fe2S and cytochrome c1 (in agreement with Glaser, E. and Crofts, A.R. (1984) Biochim. Biophys. Acta 766, 223-235), i.e., charge separation accompanies electron transfer between cytochrome bL and cytochrome bH; (2) the redox reactions between cytochrome bL and cytochrome bH and between cytochrome bH and Qc constitute the full electrogenic span; (3) electron transfer between cytochrome bL and cytochrome bH contributes approx. 60% of this span; (4) electron transfer between cytochrome bH and Qc contributes 45-55% as calculated from the blue bandshift or the delta psi-dependent equilibrium shift; (5) there is no discernable pH dependence of the Qz-cytochrome bH or Qc-cytochrome bH charge-separation reactions; (6) cytochrome bL, Qz, 2Fe2S, and cytochrome c1 are on the periplasmic side out of the low dielectric part of the membrane while cytochrome bH is buried in the low dielectric medium; (7) electron transfer is the predominant if not the sole contributor to charge separation; (8) Qz and Qc are on opposite sides of the membrane dielectric profile.  相似文献   

13.
(1) The kinetics of the reduction by duroquinol of the prosthetic groups of QH2:cytochrome c oxidoreductase and of the formation of ubisemiquinone have been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) The formation of the antimycin-sensitive ubisemiquinone anion parallels the reduction of both high-potential and low-potential cytochrome b-562. (3) The rates of reduction of both the [2Fe-2S] clusters and cytochromes (c + c1) are pH dependent. There is, however, a pH-dependent discrepancy between their rate of reduction, which can be correlated with the difference in pH dependencies of their midpoint potentials. (4) Lowering the pH or the Q content results in a slower reduction of part of the [2Fe-2S] clusters. It is suggested that one cluster is reduced by a quinol/semiquinone couple and the other by a semiquinone/quinone couple. (5) Myxothiazol inhibits the reduction of the [2Fe-2S] clusters, cytochrome c1 and high-potential cytochrome b-562. (6) The results are consistent with a Q-cycle model describing the pathway of electrons through a dimeric QH2:cytochrome c oxidoreductase.  相似文献   

14.
The presence of ubiquinol:cytochrome c2 oxidoreductase was shown in the membranes from a photosynthetic bacterium, Rhodopseudomonas palustris. Some properties of the enzyme in situ were investigated. The optimal pH of this enzyme activity was 7.0 in the intact membranes. The activity was inhibited by both antimycin and myxothiazol. Maximal activity (Vmax) was 3-4 mol cytochrome c (c2) reduced/mol cytochrome c1.s. Apparent activity of the enzyme with horse heart cytochrome c as the electron acceptor decreased as the concentration of salts in the reaction mixture increased, whereas when R. palustris cytochrome c2 was used as the electron acceptor, the activity increased as the concentration of salts increased. Moreover, the activity of the enzyme did not depend on the species or concentration of anions but on both the concentration and valency of the cations of the salts. These salt effects were thought to be due to the change of effective concentration of cytochrome molecules caused by cations near the membrane surface, which was net negatively charged. Apparent Km for ubiquinol-1 was about 80 microM irrespective of the species of cytochrome and the presence of salts.  相似文献   

15.
Potent new inhibitors of NADH:ubiquinone oxidoreductase (complex I) have been designed, with the help of molecular modelling, by hybridisation of known complex I inhibitors with inhibitors of cytochrome c oxidoreductase. The most interesting compound was the chromone 7 which was a selective inhibitor of complex I (IC(50) 15 nM) and showed acaricidal activity against spider mites.  相似文献   

16.
The ubiquinol-cytochrome c2 oxidoreductase (cytochrome bc1 complex) purified from chromatophores of Rhodobacter sphaeroides consists of four polypeptide subunits corresponding to cytochrome b, c1, and the Rieske iron-sulfur protein, as well as a 14-kDa polypeptide of unknown function, respectively. In contrast, the complex isolated from Rhodospirillum rubrum by the same procedure lacked a polypeptide corresponding to the 14-kDa subunit. Gel-permeation chromatography of the R. sphaeroides cytochrome bc1 complex in the presence of 200 mM NaCl removed the iron-sulfur protein, while the 14-kDa polypeptide remained tightly bound to the cytochromes; this is consistent with the possibility that the latter protein is an authentic component of the complex rather than an artifact of the isolation procedure. The individual polypeptides of the R. sphaeroides complex were purified to homogeneity by gel-permeation chromatography in the presence of 50% aqueous formic acid and their amino acid compositions determined. The 14-kDa polypeptide was found to be rich in charged and polar residues. Edman degradation analysis indicated that its N terminus is blocked and not rendered accessible by de-blocking procedures. Cyanogen bromide cleavage gave rise to a blocked N-terminal fragment as well as a C-terminal peptide comprising more than one-third of the protein. Gas-phase sequence analysis of this peptide established a sequence of 48 residues and identified a putative trans-membrane segment near the C terminus. The blocked N-terminal fragment was cleaved at tryptophan with BNPS-skatole. The resulting peptides, together with tryptic fragments derived from the intact protein, yielded additional sequence information; however, none of the sequences exhibited significant homologies to any known proteins. Tryptic fragments were also used to generate sequence information for cytochrome c1.  相似文献   

17.
1. In the inner mitochondrial membrane, dehydrogenases and cytochromes appear to act independently of each other, and electron transport has been proposed to occur through a mobile pool of ubiquinone-10 molecules [Kröger & Klingenberg (1973) Eur. J. Biochem. 34, 358--368]. 2. Such behaviour can be restored to the interaction between purified Complex I and Complex III by addition of phospholipid and ubiquinone-10 to a concentrated mixture of the Complexes before dilution. 3. A model is proposed for the interaction of Complex I with Complex III in the natural membrane that emphasizes relative mobility of the Complexes rather than ubiquinone-10. Electron transfer occurs only through stoicheiometric Complex I-Complex III units, which, however, are formed and re-formed at rates higher than the rate of electron transfer.  相似文献   

18.
19.
Beef heart mitochondrial ubiquinol:cytochrome c oxidoreductase has been crystallized in the shape of hexagonal bipyramids. At present the crystals diffract X-rays to 4.7 A. From preliminary analysis the diffraction pattern appears to be consistent with space group P6(1)22 or P6(5)22 and with unit cell parameters a = b = 212 A and c = 352 A.  相似文献   

20.
Myxothiazol, an inhibitor of the ubiquinol oxidase site of the ubiquinol:cytochrome c2 oxidoreductase complex, has been shown in the present work to inhibit a part of the electrogenic process indicated by phase III of the carotenoid change, in addition to the part of the change inhibited by antimycin. This finding shows that there is an antimycin-insensitive, but myxothiazol-sensitive portion of the slow phase, which indicates the existence of an electrogenic event within the ubiquinol:cytochrome c2 oxidoreductase complex, in addition to that linked to oxidation of cytochrome b-561 which has been previously characterized. Redox titrations show that the appearance of the new electrogenic step is correlated with the amount of cytochrome b-561 available in the oxidized form before the flash. The rate of the antimycin-insensitive and myxothiazol-sensitive portion of the carotenoid change correlates well with the rate of reduction of cytochrome b-561. No carotenoid change associated with reduction of cytochrome b-566 was seen. These findings suggest that the newly identified electrogenic process is linked to electron transfer between cytochrome b-566 and b-561. Calculations of the contribution of this new electrogenic step to the total electrogenic event within the complex show that electrons passing from cytochrome b-566 to cytochrome b-561 pass about 35-50% of the distance across the whole membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号