首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the three synaptic vesicle proteins SV2, synaptophysin and synaptotagmin, and of SNAP-25, a component of the docking and fusion complex, was investigated in PC12 cells by immunocytochemistry. Colloidal gold particle-bound secondary antibodies and a preembedding protocol were applied. Granules were labeled for SV2 and synaptotagmin but not for synaptophysin. Electron-lucent vesicles were labeled most intensively for synaptophysin but also for SV2 and to a lesser extent for synaptotagmin. The t-SNARE SNAP-25 was found at the plasma membrane but also at the surface of granules. Labeling of Golgi vesicles was observed for all antigens investigated. Also components of the endosomal pathway such as multivesicular bodies and multilamellar bodies were occasionally marked. The results suggest that the three membrane-integral synaptic vesicle proteins can have a differential distribution between electron-lucent vesicles (of which PC12 cells may possess more than one type) and granules. The membrane compartment of granules appears not to be an immediate precursor of that of electron-lucent vesicles.  相似文献   

2.
Glycosylation is a major form of post-translational modification of synaptic vesicle membrane proteins. For example, the three major synaptic vesicle glycoproteins, synaptotagmin 1, synaptophysin, and SV2, represent ∼30% of the total copy number of vesicle proteins. Previous studies suggested that glycosylation is required for the vesicular targeting of synaptotagmin 1, but the role of glycosylation of synaptophysin and SV2 has not been explored in detail. In this study, we analyzed all glycosylation sites on synaptotagmin 1, synaptophysin, and SV2A via mutagenesis and optical imaging of pHluorin-tagged proteins in cultured neurons from knock-out mice lacking each protein. Surprisingly, these experiments revealed that glycosylation is completely dispensable for the sorting of synaptotagmin 1 to SVs whereas the N-glycans on SV2A are only partially dispensable. In contrast, N-glycan addition is essential for the synaptic localization and function of synaptophysin. Thus, glycosylation plays distinct roles in the trafficking of each of the three major synaptic vesicle glycoproteins.  相似文献   

3.
《The Journal of cell biology》1993,122(6):1207-1221
The pathways of synaptic vesicle (SV) biogenesis and recycling are still poorly understood. We have studied the effects of Brefeldin A (BFA) on the distribution of several SV membrane proteins (synaptophysin, synaptotagmin, synaptobrevin, p29, SV2 and rab3A) and on endosomal markers to investigate the relationship between SVs and the membranes with which they interact in cultured hippocampal neurons developing in isolation. In these neurons, SV proteins are detected as punctate immunoreactivity that is concentrated in axons but is also present in perikarya and dendrites. In the same neurons, the transferrin receptor, a well established marker of early endosomes, is selectively concentrated in perikarya and dendrites. In the perikaryal- dendritic region, BFA induced a dramatic tubulation of transferrin receptors as well as a cotubulation of the bulk of synaptophysin. Synaptotagmin, synaptobrevin, p29 and SV2 immunoreactivities retained a primarily punctate distribution. No tubulation of rab3A was observed. In axons, BFA did not produce any obvious alteration of the distribution of SV proteins, nor of peroxidase- or Lucifer yellow- labeled early endosomes. The selective effect of BFA on dendritic membranes suggests the existence of functional differences between the endocytic systems in dendrites and axons. Cotubulation of transferrin receptors and synaptophysin in the perikaryal-dendritic region is consistent with a functional interconnection between the traffic of SV proteins and early endosomes. The heterogeneous effects of BFA on SV proteins in this cell region indicates that SV proteins are differentially sorted upon exit from the TGN and are coassembled into SVs at the cell periphery.  相似文献   

4.
Synaptic vesicles are released from membranes during incubation at 37°C in the presence of ATP (adenosine triphosphate). The donor membranes are a rapidly sedimenting fraction derived from the neuroendocrine cell line PC12 (pheochromocytoma 12). These starting membranes contain the synaptic vesicle proteins, synaptophysin and SV2, and the endosomal markers transferrin receptor and cation-independent MPR (mannose 6-phosphate receptor). Incubating the membranes in vitro increased the amount of organelles that migrate as synaptic vesicles in velocity sedimentation gradients. The synaptic vesicle fractions that contain both synaptophysin and SV2 do not contain endosomal markers. A synaptic vesicle increase in vitro is time-, cytosol-, ATP- and temperature-dependent and is inhibited by NEM (N-ethylmaleimide), BFA (brefeldin A) and aluminum fluoride, but not GTPS (guanosine-5-O-C3-thiotriphosphate). The production of synaptic vesicles under these conditions is unlike the de novo generation of vesicles from endosomes (1). Incubation in vitro under the conditions described here may allow the final stages of synaptic vesicle formation, uncoating or undocking, to occur but not the initiation of formation de novo.  相似文献   

5.
In the present study, we generated a systematic overview of the expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Using indirect immunofluorescence microscopy, we analyzed the spatial and temporal distribution of 11 important membrane and membrane-associated synaptic proteins (syntaxin 1/3, SNAP-25, synaptobrevin 2, synaptogyrin, synaptotagmin I, SV2A, SV2B, Rab3A, clathrin light chains, CSP and neuroligin I) during synaptogenesis. The temporospatial distribution of these synaptic proteins was "normalized" by the simultaneous visualization of the synaptic vesicle protein synaptophysin, which served as an internal reference protein. We found that expression of various synaptic membrane proteins started at different time points and changed progressively during development. At early stages of development synaptic vesicle membrane proteins at extrasynaptic locations did not always colocalize with synaptophysin, indicating that these proteins probably do not reside in the same transport vesicles. Despite a non-synchronized onset of protein expression, clustering and colocalization of all synaptic membrane proteins at ribbon synapses roughly occurred in the same time window (between day 4 after birth, P4, and P5). Thus, the basic synaptic membrane machinery is already present in ribbon synapses before the well-known complete morphological maturation of ribbon synapses between P7 and P12. We conclude that ribbon synapse formation is a multistep process in which the concerted recruitment of synaptic membrane proteins is a relatively early event and clearly not the final step.  相似文献   

6.
The subcellular distribution of three proteins of synaptic vesicles (synaptin/synaptophysin, p65 and SV2) was determined in bovine adrenal medulla and sympathetic nerve axons. In adrenals most p65 and SV2 is confined to chromaffin granules. Part of synaptin/synaptophysin is apparently also present in these organelles, but a considerable portion is found in a light vesicle which does not contain significant concentrations of typical markers of chromaffin granules (cytochrome b-561, dopamine beta-hydroxylase or the amine carrier). An analogous finding was obtained for sympathetic axons. The large dense core vesicles contain most p65 and also SV2 but only a smaller portion of synaptin/synaptophysin. A lighter vesicle containing this latter antigen and some SV2 has also been found. These results establish that in adrenal medulla and sympathetic axons three typical antigens of synaptic vesicles are not restricted to light vesicles. Apparently, a varying part of these antigens is found in chromaffin granules and large dense core vesicles. On the other hand, the light vesicles do not contain significant concentrations of functional antigens of chromaffin granules. Thus, the biogenesis of small presynaptic vesicles which contain all three antigens as well as functional components like the amine carrier is likely to involve considerable membrane sorting.  相似文献   

7.
We have reported previously that the synaptic vesicle (SV) protein synaptophysin, when expressed in fibroblastic CHO cells, accumulates in a population of recycling microvesicles. Based on preliminary immunofluorescence observations, we had suggested that synaptophysin is targeted to the preexisting population of microvesicles that recycle transferrin (Johnston, P. A., P. L. Cameron, H. Stukenbrok, R. Jahn, P. De Camilli, and T. C. Südhof. 1989. EMBO (Eur. Mol. Biol. Organ.) J. 8:2863-2872). In contrast to our results, another group reported that expression of synaptophysin in cells which normally do not express SV proteins results in the generation of a novel population of microvesicles (Leube, R. E., B. Wiedenmann, and W. W. Franke. 1989. Cell. 59:433-446). We report here a series of morphological and biochemical studies conclusively demonstrating that synaptophysin and transferrin receptors are indeed colocalized on the same vesicles in transfected CHO cells. These observations prompted us to investigate whether an overlap between the distribution of the two proteins also occurs in endocrine cell lines that endogenously express synaptophysin and other SV proteins. We have found that endocrine cell lines contain two pools of membranes positive for synaptophysin and other SV proteins. One of the two pools also contains transferrin receptors and migrates faster during velocity centrifugation. The other pool is devoid of transferrin receptors and corresponds to vesicles with the same sedimentation characteristics as SVs. These findings suggest that in transfected CHO cells and in endocrine cell lines, synaptophysin follows the same endocytic pathway as transferrin receptors but that in endocrine cells, at some point along this pathway, synaptophysin is sorted away from the recycling receptors into a specialized vesicle population. Finally, using immunofluorescent analyses, we found an overlap between the distribution of synaptophysin and transferrin receptors in the dendrites of hippocampal neurons in primary cultures before synapse formation. Axons were enriched in synaptophysin immunoreactivity but did not contain detectable levels of transferrin receptor immunoreactivity. These results suggest that SVs may have evolved from, as well as coexist with, a constitutively recycling vesicular organelle found in all cells.  相似文献   

8.
We have prepared highly purified synaptic vesicles from rat brain by subjecting vesicles purified by our previous method to a further fractionation step, i.e., equilibrium centrifugation on a Ficoll gradient. Monoclonal antibodies to three membrane proteins enriched in synaptic vesicles--SV2, synaptophysin, and p65--each were able to immunoprecipitate specifically approximately 90% of the total membrane protein from Ficoll-purified synaptic vesicle preparations. Anti-SV2 precipitated 96% of protein, anti-synaptophysin 92%, and anti-p65 83%. These results demonstrate two points: (1) Ficoll-purified synaptic vesicles appear to be greater than 90% pure, i.e., less than 10% of membranes in the preparation do not carry synaptic vesicle-associated proteins. These very pure synaptic vesicles may be useful for direct biochemical analyses of mammalian synaptic vesicle composition and function. (2) SV2, synaptophysin, and p65 coexist on most rat brain synaptic vesicles. This result suggests that the functions of these proteins are common to most brain synaptic vesicles. However, if SV2, synaptophysin, or p65 is involved in synaptic vesicle dynamics, e.g., in vesicle trafficking or exocytosis, separate cellular systems are very likely required to modulate the activity of such proteins in a temporally or spatially specific manner.  相似文献   

9.
SV2B regulates synaptotagmin 1 by direct interaction   总被引:5,自引:0,他引:5  
SV2 proteins are abundant synaptic vesicle proteins expressed in two major (SV2A and SV2B) and one minor (SV2C) isoform. SV2A and SV2B have been shown to be involved in the regulation of synaptic vesicle exocytosis. Previous studies found that SV2A, but not SV2B, can interact with the cytoplasmic domain of synaptotagmin 1, a Ca2+ sensor for synaptic vesicle exocytosis. To determine whether SV2B can interact with full-length synaptotagmin 1, we performed immunoprecipitations from brain protein extracts and found that SV2B interacts strongly with synaptotagmin 1 in a detergent-resistant, Ca2+ -independent manner. In contrast, an interaction between native SV2A and synaptotagmin 1 was not detectable under these conditions. The SV2B-synaptotagmin 1 complex also contained the synaptic t-SNARE proteins, syntaxin 1 and SNAP-25, suggesting that SV2B may participate in exocytosis by modulating the interaction of synaptotagmin 1 with t-SNARE proteins. Analysis of retinae in SV2B knock-out mice revealed a strong reduction in the level of synaptotagmin 1 in rod photoreceptor synapses, which are unique in that they express only the SV2B isoform. In contrast, other synaptic vesicle proteins were not affected by SV2B knock out, indicating a specific role for SV2B in the regulation of synaptotagmin 1 levels at certain synapses. These experiments suggest that the SV2B-synaptotagmin 1 complex is involved in the regulation of synaptotagmin 1 stability and/or trafficking. This study has demonstrated a new role of SV2B as a regulator of synaptotagmin 1 that is likely mediated by direct interaction of these two synaptic proteins.  相似文献   

10.
Winkler  H. 《Neurochemical research》1997,22(8):921-932
The membrane proteins of adrenergic large dense core vesicles, in particular those of chromaffin granules, have been characterized in detail. With the exception of the nucleotide carrier all major peptides have been cloned. There has been a controversy whether these vesicles contain antigens like synaptophysin, synaptotagmin and VAMP or synaptobrevin found in high concentration in synaptic vesicles. One can now conclude that large dense core vesicles also contain these peptides although in lower concentrations. The biosynthesis of large dense core vesicles is analogous to that of other peptide secreting vesicles of the regulated pathway. One cannot yet definitely define the biosynthesis of small dense core vesicles which apparently have a very similar membrane composition to that of large dense core vesicles. They may form directly from large dense core vesicles when their membranes have been retrieved after exocytosis. These membranes may become sorted in an endosomal compartment where peptides may be deleted or added. Such an addition could be derived from synaptophysin-rich vesicles present in adrenergic axons. However small dense core vesicle peptides may also be transported axonally independent of large dense core vesicles. For proving one of these possibilities some crucial experiments have been suggested.  相似文献   

11.
NECAPs (adaptin ear-binding clathrin-associated protein) are a new family of clathrin accessory proteins identified through a proteomic analysis of clathrin-coated vesicles (CCVs) from the brain. One member of this family, NECAP 1, is found primarily in tissues from the central nervous system and has been shown to be complexed tightly with a substantial portion of adaptor protein-2 (AP-2) in brain extracts. However, the function and intracellular location of this protein is unknown. In this study, we find that endogenous and epitope-tagged NECAP 1 co-localizes well with clathrin and AP-2 in punctate structures, many of which also contain the presynaptic markers synaptophysin, synaptotagmin or synaptic vesicle protein 2 (SV2). NECAP 1 was also detected by western blot in synaptic vesicle preparations. Overexpression of a truncation mutant of NECAP 1 (BC-NECAP 1) in neurons inhibited transferrin endocytosis but not epidermal growth factor (EGF) endocytosis, and this inhibition was dependent on an AP-2-binding WVQF motif. Moreover, overexpression of BC-NECAP 1 results in inhibition of synaptotagmin endocytosis both in unstimulated neurons and in neurons stimulated with potassium chloride. This inhibition was abrogated by truncation of the WVQF domain. We conclude from these observations that NECAP 1 plays a role in clathrin-mediated neuronal endocytosis, including a role in presynaptic endocytosis.  相似文献   

12.
Existing data support the hypothesis that insulin triggers the exocytosis of small vesicles containing the GluT4 isoform of the glucose transporter. The data also suggest that these vesicles reform through endocytosis of GluT4. These processes resemble those described for synaptic vesicles after depolarization of nerve cells. To determine whether GluT4 vesicles are related to synaptic vesicles, rat adipocyte low density microsomes (LDM), which are rich in GluT4 vesicles, were screened for the synaptic vesicle proteins synaptotagmin, synaptophysin, SV2, p29, rab3, and VAMP (synaptobrevin) by immunoblotting. Two polypeptides that reacted with antibodies against the VAMPs were identified, one with the same apparent size as the two isoforms of VAMP in the brain (18 kDa) and one that was slightly smaller (17 kDa). These members of the VAMP family were highly enriched in GluT4 vesicles isolated by immunoadsorption and translocated from the LDM to the plasma membrane in response to insulin. With the exception of rab3, which was observed in the LDM but was not localized in the GluT4 vesicles, the other synaptic vesicle proteins were not detected. The presence of the VAMPs in both GluT4 and synaptic vesicles suggests that the genesis and/or exocytosis of these two types of vesicles involve shared processes.  相似文献   

13.
Abstract: Several synaptic vesicle proteins including synap-tophysin and p65/synaptotagmin are expressed by the pheochromocytoma cell line PC12. Stimulation of these cells with nerve growth factor for 7 days induces morphologic neuronotypic differentiation, but the levels of synaptophysin are markedly reduced. Stimulation with cyclic AMP analogs also produces neuronotypic differentiation of PC12 cells, and the degree of morphologic differentiation induced by these agents parallels their ability to effect reduction in synaptophysin levels. By contrast, levels of p65/synaptotagmin are increased following neuronotypic differentiation. The contrasting effects of neuronotypic differentiation on levels of synaptophysin and p65/synaptotagmin indicate potential differences in the regulation of these proteins in PC12 cells. Immunocytochemical labeling of undifferentiated PC12 cells reveals concentrations of synaptophysin in the perinuclear region. After neuronotypic differentiation, there is reduction in perinuclear labeling and concentration of label in swellings along PC12 cell processes. At the ultra-structural level, synaptophysin labeling is found on similar organelles in both undifferentiated and nerve growth factor-stimulated PC12 cells. Although the highest labeling densities were seen on small clear vesicles, specific labeling was also seen on dense core vesicles. The presence of synaptophysin on both small clear vesicles and dense core vesicles indicates potential functional similarities in these vesicle types. The changes in the levels and immunocytochemical distribution of synaptophysin after neuronotypic differentiation suggest possible functional heterogeneity among morphologically similar populations of small clear vesicles.  相似文献   

14.
《Cell》1993,72(1):153-159
Proteins that are specifically localized to synaptic vesicles in the nervous system have been proposed to mediate aspects of synaptic transmission. Antibodies raised against the cytoplasmic domains of five of these proteins, vamp, rab3A, synaptophysin, synaptotagmin, and SV2, were used to investigate their function. Microinjection of monoclonal and polyclonal antibodies raised against synaptotagmin (p65), but not the other vesicle proteins, decreases K+/Ca2+-mediated dopamine β-hydroxylase surface staining, a measure of regulated secretion in PC12 cells. Microinjection of a soluble fragment of synaptotagmin encompassing one of the domains homologous to the C2 regulatory region of protein kinase C, but lacking the membrane anchor, also inhibits evoked dopamine β-hydroxylase surface staining. These results provide support for the hypothesis that synaptotagmin, a Ca2+- and phospholipid-binding protein, is important for regulated exocytosis in neurons.  相似文献   

15.
The expression and localization of the vesicular acetylcholine transporter in a septal cell line, SN56, were investigated. Immunoprecipitation and immunoblot analysis of postnuclear supernatants indicated that this cell line expresses reasonable amounts of the transporter. Immunofluorescence and confocal microscopy experiments showed that the vesicular transporter is present in varicosities and also in the cell body of differentiated cells. Varicosities have the potential to be functional sites of transmitter release because they responded to depolarization with calcium influx through voltage-gated calcium channels and expressed the synaptic proteins synaptotagmin, SV2, synaptophysin, and a subunit of P/Q calcium channels. In the soma of SN56 cells, the transporter immunoreactivity was similar to that for synaptotagmin, and it colocalized with synaptophysin, but it did not colocalize with SV2. Labeling for SV2 appeared prominently in a defined perinuclear structure, whereas the two former proteins were widely distributed in the soma, where several endocytic compartments could be identified with the vital dye FM4-64. These data suggest that distinct synaptic vesicle proteins exist in different subcellular compartments, and consequently they may follow distinct pathways in neurites before reaching sites of transmitter storage and release in SN56 cells.  相似文献   

16.
17.
《The Journal of cell biology》1994,127(6):1589-1601
Synaptophysin is a major transmembrane glycoprotein of a type of small vesicle with an electron-translucent content (SET vesicles), including the approximately 50-nm presynaptic vesicles in neuronal cells, and of similar, somewhat larger (< or = approximately 90 nm) vesicles (SLMV) in neuroendocrine (NE) cells. When certain epithelial non-NE cells, such as human hepatocellular carcinoma PLC cells, were cDNA transfected to synthesize synaptophysin, the new molecules appeared in specific SET vesicles. As this was in contrast to other reports that only NE cells were able to sort synaptophysin away from other plasma membrane proteins into presynaptic- or SLMV-type vesicles, we have further characterized the vesicles containing synaptophysin in transfected PLC cells. Using fractionation and immunoisolation techniques, we have separated different kinds of vesicles, and we have identified a distinct type of synaptophysin-rich, small (30-90-nm) vesicle that contains little, if any, protein of the constitutive secretory pathway marker hepatitis B surface antigen, of the fluid phase endocytosis marker HRP, and of the plasma membrane recycling endosomal marker transferrin receptor. In addition, we have found variously sized vesicles that contained both synaptophysin and transferrin receptor. A corresponding result was also obtained by direct visualization, using double-label immunofluorescence microscopy for the endocytotic markers and synaptophysin in confocal laser scan microscopy and in double- immunogold label electron microscopy. We conclude that diverse non-NE cells of epithelial nature are able to enrich the "foreign" molecule synaptophysin in a category of SET vesicles that are morphologically indistinguishable from SLMV of NE cells, including one type of vesicle in which synaptophysin is sorted away from endosomal marker proteins. Possible mechanisms of this sorting are discussed.  相似文献   

18.
Baldwin MR  Barbieri JT 《Biochemistry》2007,46(11):3200-3210
Botulinum neurotoxins (BoNTs) elicit flaccid paralysis through cleavage of SNARE proteins within peripheral neurons. There are seven serotypes of the BoNTs, termed A-G, which differ in the SNARE protein and/or site that is cleaved. BoNTs are single-chain toxins that comprise an N-terminal zinc metalloprotease domain that is disulfide linked to the C-terminal translocation/receptor binding domain. SV2 and synaptotagmin have been identified as receptors for BoNT serotypes A and B, respectively. Using affinity chromatography, BoNTs A and B were observed to bind synaptic vesicle protein complexes in synaptosome lysates. Tandem LC-MS/MS identified SV2, synaptotagmin I, synaptophysin, vesicle-associated membrane protein 2 (VAMP2), and the vacuolar proton pump as components of the BoNT-receptor complex. Density gradient analysis showed that BoNT serotypes A and B exhibited unique interactions with the synaptic vesicle protein complexes. The association of BoNT serotypes A and B with synaptic vesicle protein complexes implicates a physiological role for protein complexes in synaptic vesicle biology and provides insight into the interactions of BoNT and neuronal receptors.  相似文献   

19.
Domain structure of synaptotagmin (p65)   总被引:25,自引:0,他引:25  
Synaptotagmin (p65) is an abundant and evolutionarily conserved protein of synaptic vesicles that contains two copies of an internal repeat homologous to the regulatory region of protein kinase C. In the current study, we have investigated the biochemical properties of synaptotagmin, demonstrating that it contains five protein domains: an intravesicular amino-terminal domain that is glycosylated but lacks a cleavable signal sequence; a single transmembrane region; a sequence separating the transmembrane region from the two repeats homologous to protein kinase C; the two protein kinase C-homologous repeats; and a conserved carboxyl-terminal sequence following the two repeats homologous to protein kinase C. Sucrose density gradient centrifugations and gel electrophoresis indicate that synaptotagmin monomers associate into dimers and are part of a larger molecular weight complex. A sequence predicted to form an amphipathic alpha-helix that may cause the stable dimerization of synaptotagmin is found in its third domain between the transmembrane region and the protein kinase C-homologous repeats. Synaptotagmin contains a single hypersensitive proteolytic site that is located immediately amino-terminal to the amphipathic alpha-helix, suggesting that synaptotagmin contains a particularly exposed region as the peptide backbone emerges from the dimer. Finally, subcellular fractionation and antibody bead purification demonstrate that synaptotagmin co-purifies with synaptophysin and other synaptic vesicle markers in brain. However, in the adrenal medulla, synaptotagmin was found in both synaptophysin-containing microvesicles and in chromaffin granules that are devoid of synaptophysin, suggesting a shared role for synaptotagmin in the exocytosis of small synaptic vesicles and large dense core catecholaminergic vesicles.  相似文献   

20.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号