首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of elevated CO2 on secondary metabolites for saplings of tropical trees. In the first experiment, nine species of trees were grown in the ground in open-top chambers in central Panama at ambient and elevated CO2 (about twice ambient). On average, leaf phenolic contents were 48% higher under elevated CO2. Biomass accumulation was not affected by CO2, but starch, total non-structural carbohydrates and C/N ratios all increased. In a second experiment with Ficus, an early successional species, and Virola, a late successional species, treatments were enriched for both CO2 and nutrients. For both species, nutrient fertilization increased plant growth and decreased leaf carbohydrates, C/N ratios and phenolic contents, as predicted by the carbon/nutrient balance hypothesis. Changes in leaf C/N levels were correlated with changes in phenolic contents for Virola (r=0.95, P<0.05), but not for Ficus. Thus, elevated CO2, particularly under conditions of low soil fertility, significantly increased phenolic content as well as the C/N ratio of leaves. The magnitude of the changes is sufficient to negatively affect herbivore growth, survival and fecundity, which should have impacts on plant/herbivore interactions.  相似文献   

2.
Short-term studies of tree growth at elevated CO2 suggest that forest productivity may increase as atmospheric CO2 concentrations rise, although low soil N availability may limit the magnitude of this response. There have been few studies of growth and N2 fixation by symbiotic N2-fixing woody species under elevated CO2 and the N inputs these plants could provide to forest ecosystems in the future. We investigated the effect of twice ambient CO2 on growth, tissue N accretion, and N2 fixation of nodulated Alnus glutinosa (L.) Gaertn. grown under low soil N conditions for 160 d. Root, nodule, stem, and leaf dry weight (DW) and N accretion increased significantly in response to elevated CO2. Whole-plant biomass and N accretion increased 54% and 40%, respectively. Delta-15N analysis of leaf tissue indicated that plants from both treatments derived similar proportions of their total N from symbiotic fixation suggesting that elevated CO2 grown plants fixed approximately 40% more N than did ambient CO2 grown plants. Leaves from both CO2 treatments showed similar relative declines in leaf N content prior to autumnal leaf abscission, but total N in leaf litter increased 24% in elevated compared to ambient CO2 grown plants. These results suggest that with rising atmospheric CO2 N2-fixing woody species will accumulate greater amounts of biomass N through N2 fixation and may enhance soil N levels by increased litter N inputs.  相似文献   

3.
After defoliation by herbivores, some plants exhibit enhanced rates of photosynthesis and growth that enable them to compensate for lost tissue, thus maintaining their fitness relative to competing, undefoliated plants. Our aim was to determine whether compensatory photosynthesis and growth would be altered by increasing concentrations of atmospheric CO2. Defoliation of developing leaflets on seedlings of a tropical tree, Copaifera aromatica, caused increases in photosynthesis under ambient CO2, but not under elevated CO2. An enhancement in the development of buds in the leaf axils followed defoliation at ambient levels of CO2. In contrast, under elevated CO2, enhanced development of buds occurred in undefoliated plants with no further enhancement in bud development due to exposure to elevated CO2. Growth of leaf area after defoliation was increased, particularly under elevated CO2. Despite this increase, defoliated plants grown under elevated CO2 were further from compensating for tissue lost during defoliation after 51/2 weeks than those grown under ambient CO2 concentrations.  相似文献   

4.
The mechanisms for species-specific growth responses to changes in atmospheric CO2 concentration within narrow ecological groups of species, such as shade-tolerant, late-successional trees, have rarely been addressed and are not well understood. In this study the underlying functional traits for interspecific variation in the biomass response to elevated CO2 were explored for seedlings of five late-successional temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba). The seedlings were grown in the natural forest understorey in very low and low light microsites (an average of 1.3% and 3.4% full sun in this experiment), and were exposed to either current ambient CO2 concentrations, 500, or 660 µl CO2 l-1 in 36 open-top chambers (OTC) over two growing seasons. Even across the narrow range of successional status and shade tolerance, the study species varied greatly in photosynthesis, light compensation point, leaf dark respiration (Rd), leaf nitrogen concentration, specific leaf area (SLA), leaf area ratio (LAR), and biomass allocation among different plant parts, and showed distinct responses to CO2 in these traits. No single species combined all characteristics traditionally considered as adaptive to low light conditions. At very low light, the CO2 stimulation of seedling biomass was related to increased LAR and decreased Rd, responses that were observed only in Fagus and Taxus. At slightly higher light levels, interspecific differences in the biomass response to elevated CO2 were reversed and correlated best with leaf photosynthesis. The data provided here contribute to a mechanistic process-based understanding of distinct response patterns in co-occurring tree species to elevated CO2 in natural deep shade. I conclude that the high variation in physiological and morphological traits among late-successional species, and the consequences for their responses to slight changes in resource availability, have previously been underestimated. The commonly used broad definitions of functional groups of species may not be sufficient for the understanding of recruitment success and dynamic changes in species composition of old-growth forests in response to rising concentrations of atmospheric CO2.  相似文献   

5.
Responses of forest ecosystems to increased atmospheric CO2 concentration have been studied in few free‐air CO2 enrichment (FACE) experiments during last two decades. Most studies focused principally on the overstory trees with little attention given to understory vegetation. Despite its small contribution to total productivity of an ecosystem, understory vegetation plays an important role in predicting successional dynamics and future plant community composition. Thus, the response of understory vegetation in Pinus taeda plantation at the Duke Forest FACE site after 15–17 years of exposure to elevated CO2, 6–13 of which with nitrogen (N) amendment, was examined. Aboveground biomass and density of the understory decreased across all treatments with increasing overstory leaf area index (LAI). However, the CO2 and N treatments had no effect on aboveground biomass, tree density, community composition, and the fraction of shade‐tolerant species. The increases of overstory LAI (~28%) under elevated CO2 resulted in a reduction of light available to the understory (~18%) sufficient to nullify the expected growth‐enhancing effect of elevated CO2 on understory vegetation.  相似文献   

6.
Human-induced increases in atmospheric CO2 concentration have the potential to alter the chemical composition of plant tissue, and thereby affect the amount of tissue consumed by herbivorous arthropods. At the Duke Forest free-air concentration enrichment (FACE) facility in North Carolina (FACTS–1 research facility), we measured the amount of leaf tissue damaged by insects and other herbivorous arthropods during two growing seasons in a deciduous forest understory continuously exposed to ambient (360 l l–1) and elevated (~560 µl l–1) CO2 conditions. In 1999, there was a significant interaction between CO2 and species such that winged elm (Ulmus alata) showed lower herbivory in elevated CO2 plots, whereas red maple (Acer rubra) and sweetgum (Liquidambar styraciflua) did not. In 2000, our results did not achieve statistical significance but the magnitude of the result was consistent with the 1999 results. In 1999 and 2000, we found a decline (10–46%) in community-level herbivory in elevated CO2 plots driven primarily by reductions in herbivory on elm. The major contribution to total leaf damage was from missing tissue (66% of the damaged tissue), with galls, skeletonized, and discolored tissue making smaller contributions. It is unclear whether the decline in leaf damage is a result of altered insect populations, altered feeding, or a combination. We were not able to quantify insect populations, and our measurements did not resolve an effect of elevated CO2 on leaf chemical composition (total nitrogen, carbon, C/N, sugars, phenolics, starch). Despite predictions from a large number of single-species studies that herbivory may increase under elevated CO2, we have found a decrease in herbivory in a naturally established forest understory exposed to a full suite of insect herbivores and their predators.  相似文献   

7.
The magnitude of changes in carboxylation capacity in dominant plant species under long‐term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free‐air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by +40±5% in elevated pCa (49.5–57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of ?19±3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass‐based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.  相似文献   

8.
The effects of elevated carbon dioxide (CO2) on plant litter are critical determinants of ecosystem feedback to changing atmospheric CO2 concentrations. We measured concentrations of nitrogen (N) and carbon (C) and calculated C : N ratios of green leaves of two desert perennial shrubs, and the same quality parameters plus lignin and cellulose content of leaf litter from four shrub species exposed to elevated CO2 (FACE technology; Hendrey & Kimball, 1994 ) for 3 years in an intact Mojave Desert ecosystem. Shrubs tested were Larrea tridentata, Lycium pallidum, Lycium andersonii and Ambrosia dumosa. We calculated resorption efficiency from green tissue and leaf litter N data and measured lignin and cellulose content in litter in the last year study. Green leaves of L. tridentata grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown in ambient conditions in 1999 (P < 0.05). Lycium pallidum green leaves grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown under ambient conditions in 2000 (P < 0.05). There was no CO2 effect on C content of either species. We found no effect of CO2 on N or C content, C : N ratios, or lignin or cellulose concentrations in leaf litter of L. tridentata, L. pallidum, L. andersonii, or A. dumosa. There was no significant effect of CO2 on estimates of shrub resorption efficiency. There was a seasonal effect on green tissue and litter tissue quality for L. tridentata, with lower tissue N content in summer than in spring or winter months. These data suggest that any productivity increases with elevated CO2 in desert ecosystems may not be limited by lower leaf litter quality and that resorption efficiency calculations are best performed on an individual leaf basis.  相似文献   

9.
Though field data for naturally senesced leaf litter are rare, it is commonly assumed that rising atmospheric CO2 concentrations will reduce leaf litter quality and decomposition rates in terrestrial ecosystems and that this will lead to decreased rates of nutrient cycling and increased carbon sequestration in native ecosystems. We generally found that the quality of␣naturally senesced leaf litter (i.e. concentrations of C, N and lignin; C:N, lignin:N) of a variety of native plant species produced in alpine, temperate and tropical communities maintained at elevated CO2 (600–680 μl l−1) was not significantly different from that produced in similar communities maintained at current ambient CO2 concentrations (340–355 μl l−1). When this litter was allowed to decompose in situ in a humid tropical forest in Panama (Cecropia peltata, Elettaria cardamomum, and Ficus benjamina, 130 days exposure) and in a lowland temperate calcareous grassland in Switzerland (Carex flacca and a graminoid species mixture; 261 days exposure), decomposition rates of litter produced under ambient and elevated CO2 did not differ significantly. The one exception to this pattern occurred in the high alpine sedge, Carex curvula, growing in the Swiss Alps. Decomposition of litter produced in situ under elevated CO2 was significantly slower than that of litter produced under ambient CO2 (14% vs. 21% of the initial litter mass had decomposed over a 61-day exposure period, respectively). Overall, our results indicate that relatively little or no change in leaf litter quality can be expected in plant communities growing under soil fertilities common in many native ecosystems as atmospheric CO2 concentrations continue to rise. Even in situations where small reductions in litter quality do occur, these may not necessarily lead to significantly slower rates of decomposition. Hence in many native species in situ litter decomposition rates, and the time course of decomposition, may remain relatively unaffected by rising CO2. Received: 12 September 1996 / Accepted: 30 November 1996  相似文献   

10.
Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO2. Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO2-induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 l CO2 l–1 or to 610 l CO2 l–1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO2. Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO2 under relatively low nutrient conditions. Hence, the potential importance of CO2-induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.  相似文献   

11.
Canopy N and P dynamics of a southeastern US pine forest under elevated CO2   总被引:2,自引:1,他引:1  
Forest production is strongly nutrient limited throughout the southeastern US. If nutrient limitations constrain plant acquisition of essential resources under elevated CO2, reductions in the mass or nutrient content of forest canopies could constrain C assimilation from the atmosphere. We tested this idea by quantifying canopy biomass, foliar concentrations of N and P, and the total quantity of N and P in a loblolly pine (Pinus taeda) canopy subject to 4 years of free-air CO2 enrichment. We also used N:P ratios to detect N versus P limitation to primary production under elevated CO2. Canopy biomass was significantly higher under elevated CO2 during the first 4 years of this experiment. Elevated CO2 significantly reduced the concentration of N in loblolly pine foliage (5% relative to ambient CO2) but not P. Despite the slight reduction foliage N concentrations, there were significant increases in canopy N and P contents under elevated CO2. Foliar N:P ratios were not altered by elevated CO2 and were within a range suggesting forest production is N limited not P limited. Despite the clear limitation of NPP by N under ambient and elevated CO2 at this site, there is no evidence that the mass of N or P in the canopy is declining through the first 4 years of CO2 fumigation. As a consequence, whole-canopy C assimilation is strongly stimulated by elevated CO2 making this forest a larger net C sink under elevated CO2 than under ambient CO2. We discuss the potential for future decreases in canopy nutrient content as a result of limited changes in the size of the plant-available pools of N under elevated CO2.  相似文献   

12.
The accumulation of non-structural leaf carbohydrates is one of the most consistent plant responses to elevated CO2. It has been found in both fast-and slow-growing plants and is largely independent of the duration of exposure. Changes in leaf quality are thus to be expected, irrespective of other plant responses to atmospheric CO2 enrichment. However, there is no experimental evidence from tropical forests, the biome with the largest biomass carbon pool. Here we report in situ mesophyll responses of mature tropical trees to a doubling of CO2. Individually CO2-enriched leaves on 25 to 35-m-tall forest trees living at 26–35°C can be assumed to experience little sink limitation, and so, may be expected to exhibit no or very little carbohydrate accumulation. We tested this hypothesis using the leaf cup method on leaves accessible via the canopy crane of the Smithsonian Tropical Research Institute in a semi-deciduous tropical forest in Panamá. We also investigated the influence of the leaf-specific light regime, another possible environmental determinant of leaf carbon gain and mobile leaf carbohydrates. Total non-structural carbohydrates (TNC) reached a new steady state concentration after less than 4 days of exposure to twice ambient CO2 concentration. Against expectation, all four tree species investigated (Anacardium excelsum, Cecropia longipes, C. peltata, Ficus insipida) accumulated significant amounts of TNC (+41 to +61%) under elevated CO2. The effect was stronger at the end of the daylight period (except for Ficus), but was still significant in all four species at the end of the dark period. In contrast, neither artificial nor natural shading affected leaf TNC. Taken together, these observations suggest that TNC accumulation reflects a mesophyll-bound tissue response specific to elevated CO2, presumably unrelated to sink limitations. Thus, leaves of tropical forests seem not to be an exception, and will most likely contain more non-structural carbohydrates in a CO2-rich world. Received: 28 January 1998 / Accepted: 9 April 1998  相似文献   

13.
In deep shade, elevated CO2 increases the vigor of tropical climbing plants   总被引:1,自引:0,他引:1  
Climbing plants have profound influences on tropical forest dynamics and may take particular advantage from atmospheric CO2 enrichment, thus potentially enhancing tree turnover. Here we test the effect of a four‐step CO2‐enrichment on growth of three typical Yucatan (Mexico) climbers, across two low photon flux densities, representing typical understory situations. In pairs of two, species of Gonolobus (Asclepiadaceae), Ceratophytum (Bignoniaceae) and Thinouia (Sapindaceae) were grown on Yucatan forest soil in growth cabinets, which simulated the diurnal climate variation. Biomass increased non‐linearly in response to CO2 enrichment from 280 (preindustrial) to 420 ppm and 560 ppm, but then (700 ppm) leveled off. The relative effect of CO2‐enrichment between the two lower (280–420 ppm) CO2 concentrations was 63% at low light (LL == 42 µmol m2?2 s2?1), compared to 37% at high light (HL = 87 µmol m2?2 s2?1). This overall response of species pairs was the combined effect of linear and non‐linear responses of the individual species across CO2 treatments. Plant biomass was 61% larger in HL compared to LL. The species‐specific response depended on the neighbor, a species grew with h, irrespective of plant size. Stem length increased, but not consistently across species and light conditions. Specific stem length (SSL, length per dry mass) declined non‐linearly in all three species as CO2 concentration increased (more pronounced at LL than at HL). SLA (leaf area per unit leaf dry mass) became lower as CO2 concentration increased (more pronounced in HL). Enhanced vigor of climbers under elevated CO2 as documented here may accelerate tropical forest dynamics and lead to greater abundance of early succesional tree species. This could reduce forest carbon stocking in the long run.  相似文献   

14.
Increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition induced by human activities have greatly influenced the stoichiometry of N and phosphorus (P). We used model forest ecosystems in open‐top chambers to study the effects of elevated CO2 (ca. 700 μmol mol?1) alone and together with N addition (100 kg N ha?1 yr?1) on N to P (N : P) ratios in leaves, stems and roots of five tree species, including four non‐N2 fixers and one N2 fixer, in subtropical China from 2006 to 2009. Elevated CO2 decreased or had no effects on N : P ratios in plant tissues of tree species. N addition, especially under elevated CO2, lowered N : P ratios in the N2 fixer, and this effect was significant in the stems and the roots. However, only one species of the non‐N2 fixers showed significantly lower N : P ratios under N addition in 2009, and the others were not affected by N addition. The reductions of N : P ratios in response to elevated CO2 and N addition were mainly associated with the increases in P concentrations. Our results imply that elevated CO2 and N addition could facilitate tree species to mitigate P limitation by more strongly influencing P dynamics than N in the subtropical forests.  相似文献   

15.
Regenerating forests influence the global carbon (C) cycle, and understanding how climate change will affect patterns of regeneration and C storage is necessary to predict the rate of atmospheric carbon dioxide (CO2) increase in future decades. While experimental elevation of CO2 has revealed that young forests respond with increased productivity, there remains considerable uncertainty as to how the long‐term dynamics of forest regrowth are shaped by elevated CO2 (eCO2). Here, we use the mechanistic size‐ and age‐ structured Ecosystem Demography model to investigate the effects of CO2 enrichment on forest regeneration, using data from the Duke Forest Free‐Air Carbon dioxide Enrichment (FACE) experiment, a forest chronosequence, and an eddy‐covariance tower for model parameterization and evaluation. We find that the dynamics of forest regeneration are accelerated, and stands consistently hit a variety of developmental benchmarks earlier under eCO2. Because responses to eCO2 varied by plant functional type, successional pathways, and mature forest composition differed under eCO2, with mid‐ and late‐successional hardwood functional types experiencing greater increases in biomass compared to early‐successional functional types and the pine canopy. Over the simulation period, eCO2 led to an increase in total ecosystem C storage of 9.7 Mg C ha‐1. Model predictions of mature forest biomass and ecosystem–atmosphere exchange of CO2 and H2O were sensitive to assumptions about nitrogen limitation; both the magnitude and persistence of the ecosystem response to eCO2 were reduced under N limitation. In summary, our simulations demonstrate that eCO2 can result in a general acceleration of forest regeneration while altering the course of successional change and having a lasting impact on forest ecosystems.  相似文献   

16.
The response of temperate forest ecosystems to elevated atmospheric CO2 concentrations is important because these ecosystems represent a significant component of the global carbon cycle. Two important but not well understood processes which elevated CO2 may substantially alter in these systems are regeneration and nitrogen cycling. If elevated CO2 leads to changes in species composition in regenerating forest communities then the structure and function of these ecosystems may be affected. In most temperate forests, nitrogen appears to be a limiting nutrient. If elevated CO2 leads to reductions in nitrogen cycling through increased sequestration of nitrogen in plant biomass or reductions in mineralization rates, long-term forest productivity may be constrained. To study these processes, we established mesocosms of regenerating forest communities in controlled environments maintained at either ambient (375 ppm) or elevated (700 ppm) CO2 concentrations. Mesocosms were constructed from intact monoliths of organic forest soil. We maintained these mesocosms for 2 years without any external inputs of nitrogen and allowed the plants naturally present as seeds and rhizomes to regenerate. We used 15N pool dilution techniques to quantify nitrogen fluxes within the mesocosms at the end of the 2 years. Elevated atmospheric CO2 concentration significantly affected a number of plant and soil processes in the experimental regenerating forest mesocosms. These changes included increases in total plant biomass production, plant C/N ratios, ectomycorrhizal colonization of tree fine roots, changes in tree fine root architecture, and decreases in plant NH4 + uptake rates, gross NH4 + mineralization rates, and gross NH4 + consumption rates. In addition, there was a shift in the relative biomass contribution of the two dominant regenerating tree species; the proportion of total biomass contributed by white birch (Betula papyrifera) decreased and the proportion of total biomass contributed by yellow birch (B. alleghaniensis) increased. However, elevated CO2 had no significant effect on the total amount of nitrogen in plant and soil microbial biomass. In this study we observed a suite of effects due to elevated CO2, some of which could lead to increases in potential long term growth responses to elevated CO2, other to decreases. The reduced plant NH4 + uptake rates we observed are consistent with reduced NH4 + availability due to reduced gross mineralization rates. Reduced NH4 + mineralization rates are consistent with the increases in C/N ratios we observed for leaf and fine root material. Together, these data suggest the positive increases in plant root architectural parameters and mycorrhizal colonization may not be as important as the potential negative effects of reduced nitrogen availability through decreased decomposition rates in a future atmosphere with elevated CO2. Received: 10 January 1997 / Accepted: 25 July 1997  相似文献   

17.
 Seedlings of Eucalyptus tereticornis (Smith) were grown under two levels of availability each of CO2 (352 and 793 μmol mol−1), soil nutrients (1/24 and 1/4 Hoagland’s solution) and light (full and 30% sunlight). Low soil nutrient availability or high light increased the C:N ratio of leaves, leading to lower leaf nitrogen concentrations, higher leaf specific weights and higher levels of both total phenolics and condensed tannins. These results were consistent with other studies of the effect of environmental resource availability on foliage composition. Similar results were observed when the C:N ratio of leaves was increased under elevated CO2. The changes in leaf chemistry induced by the treatments affected the performance of 4th-instar larvae of Chrysophtharta flaveola (Chapuis) fed on the leaves. Increased C:N ratios of leaves reduced digestive efficiencies and pupal body sizes and increased mortality. Below a threshold nitrogen concentration of approximately 1% dry mass, severe reductions in the performance of larvae were recorded. Such changes may have significant consequences for herbivores of Eucalyptus, particularly in view of projected increases in atmospheric CO2. Received: 8 January 1996 / Accepted: 26 June 1996  相似文献   

18.
The growth responses of a grass,Poa pratensis, to elevated CO2 and nitrogen were investigated. Light-saturated photosynthetic rate per unit leaf area increased with exposure to elevated CO2, while dry weight did not respond to increased CO2. Patterns of biomass allocation within plants, including leaf area, leaf area ratio, specific leaf area, and root to shoot ratios, were not altered by elevated CO2, but changed considerably with N treatment Shoot and whole-plant tissue N concentrations were significantly diluted by elevated CO2 (Tukey test, P < 0.05). Total N content did not differ significantly among CO2 treatments. The absence of a concomitant increase in N uptake under elevated CO2 may have caused a dilution in plant tissue [N], probably negating the positive effects of increased photosynthesis on biomass accumulation.  相似文献   

19.
Carbon uptake by forests constitutes half of the planet’s terrestrial net primary production; therefore, photosynthetic responses of trees to rising atmospheric CO2 are critical to understanding the future global carbon cycle. At the Swiss Canopy Crane, we investigated gas exchange characteristics and leaf traits in five deciduous tree species during their eighth growing season under free air carbon dioxide enrichment in a 35-m tall, ca. 100-year-old mixed forest. Net photosynthesis of upper-canopy foliage was 48% (July) and 42% (September) higher in CO2-enriched trees and showed no sign of down-regulation. Elevated CO2 had no effect on carboxylation efficiency (V cmax) or maximal electron transport (J max) driving ribulose-1,5-bisphosphate (RuBP) regeneration. CO2 enrichment improved nitrogen use efficiency, but did not affect leaf nitrogen (N) concentration, leaf thickness or specific leaf area except for one species. Non-structural carbohydrates accumulated more strongly in leaves grown under elevated CO2 (largely driven by Quercus). Because leaf area index did not change, the CO2-driven stimulation of photosynthesis in these trees may persist in the upper canopy under future atmospheric CO2 concentrations without reductions in photosynthetic capacity. However, given the lack of growth stimulation, the fate of the additionally assimilated carbon remains uncertain.  相似文献   

20.
Elevated CO2 reduces the nitrogen concentration of plant tissues   总被引:1,自引:1,他引:0  
We summarize the impacts of elevated CO2 on the N concentration of plant tissues and present data to support the hypothesis that reductions in the quality of plant tissue commonly occur when plants are grown under elevated CO2. Synthesis of existing data showed an average 14% reduction of N concentrations in plant tissue generated under elevated CO2 regimes. However, elevated CO2 appeared to have different effects on the N concentrations of different plant types, as the reported reductions in N have been larger in C3 plants than in C4 plants and N2-fixers. Under elevated CO2 plants changed their allocation of N between above- and below-ground components: root N concentrations were reduced by an average of 9% compared to a 14% average reduction for above-ground tissues. Although the concentration of CO2 treatments represented a significant source of variance for plant N concentration, no consistent trends were observed between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号