首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The Quaternary period was marked by considerable changes in climate. Such palaeoclimatic changes affected the population dynamics of many species, both in the Northern and in the Southern Hemisphere. However, the extent of these impacts on the demographic patterns of Neotropical species presenting different ecological requirements remains unclear. Drosophila maculifrons DUDA 1947 belongs to the guaramunu group of Drosophila and represents a potential indicator of the genetic consequences caused by the climatic fluctuations of the Quaternary, because it seems to be sensitive to temperature and humidity shifts. The aim of this study was to evaluate the evolutionary processes subjacent to the patterns of intraspecific diversity and structure of different populations of D. maculifrons. In total, 152 individuals were collected in the south and south‐east Brazil. Phylogenetic and phylogeographical analyses were performed based on sequences of COI and COII mitochondrial genes. In general, the results pointed to Brazilian populations of D. maculifrons being extremely impoverished in terms of mitochondrial diversity and population structure, which could be explained by a recent population expansion event dated to approximately 12 000 years ago. In fact, with the assistance of species palaeo‐distribution modelling strategies, it was possible to infer that most of the sampled region did not present the D. maculifrons environmental suitability requirements at least during the period of the Last Glacial Maximum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 55–66.  相似文献   

2.
    
The extent of genetic variability and host‐plant distribution of Bemisia tabaci (Gennadius) genotypes colonising cultivated and uncultivated plant species occurring adjacent to cassava fields in selected cassava‐producing areas of Uganda in 2003/04 were investigated using the mitochondrial cytochrome oxidase I (mtCOI) gene as the molecular marker. Eight genotype clusters, Ug1–Ug8, which are supported by high bootstrap values (≥80), at 3–18% nt divergence, were revealed among the collective Ugandan B. tabaci populations. Ug1 and Ug2 (both cassava‐associated) and Ug8 (sweetpotato‐associated) have been reported previously in Uganda. Ug3 was genetically dissimilar to B. tabaci described elsewhere and colonised a single species, Ocimum gratissimum. Ug4–Ug7 formed four closely related subclusters (93–97% nt identity) and diverged by 15–18% from Ug1, Ug2, Ug3 and Ug8, respectively. Ug4 had as its closest relatives (at 97–99% nt identity) the Ivory Coast okra biotype, whereas genotypes Ug5 and Ug6 had as their closest relatives (at 95–99% and 99% nt identity, respectively) the Mediterranean–North Africa–Middle East (MED‐NAFR‐ME) biotypes, which also include the well‐studied B and Q biotypes. Ug7 was closely related (at 98–99% nt identity) to biotype Ms from the Reunion Island in the Indian Ocean. Ug4 colonised Cucurbita pepo, Cucurbita sativus, Leonotis nepetifolia and Pavonia urens, while Ug7 colonised Commelina benghalensis, Gossypium hirsutum and Phaseolus vulgaris. Ug6, the B‐biotype‐like genotype colonised Abelmoschus esculentus and C. benghalensis only. None of Ug4–Ug7 genotypes was found associated with, or colonising, cassava or sweetpotato plants. In addition to colonising sweetpotato, the Ug8 genotypes colonised Lycopersicon esculentum and L. nepetifolia. Ug6 and Ug7, both members of the B biotype/B‐like cluster, induced silverleaf symptoms on Cucurbita sp. The discovery of five previously identified B. tabaci genotype clusters, Ug3–Ug7, in Uganda, among which are some of the world's most economically important biotypes, namely B and Q, is particularly significant in the spread of geminiviruses with devastating effects to crop production in Africa.  相似文献   

3.
    
The Ili River Valley, located in the northwest of China, serves as a vital repository for fish genetic resources. Its extensive water network and diverse climate have given rise to a unique fish composition and endemic species. In this study, we collected the cytochrome c oxidase subunit I (COI) sequences from 660 fish specimens in the Ili River Valley. The effectiveness of DNA barcoding in identifying fish species in the area was assessed by examining genetic distances, constructing phylogenetic trees, and performing ABGD (Automatic Barcode Gap Discovery) analyses, among other methods. In total, 20 species were identified, including one unidentified species (Silurus sp.). Except for Silurus asotus and Hypophthalmichthys molitrix (only one sample), the maximum intraspecific genetic distance among the remaining species was smaller than the minimum interspecific distance, which proves that the species exhibit obvious barcode gaps. In the Neighbor-Joining trees, 20 species formed separate monophyletic branches. According to ABGD analysis, 660 sequences were categorized into 19 Operational Taxonomic Units, with Silurus sp. and S. asotus grouped into a single OTU. The Silurus in this study exhibits shared haplotypes and significant genetic divergence, suggesting the potential presence of cryptic species. Furthermore, the nucleotide diversity across all species fell below the threshold level, indicating that the local fish population is gradually declining. In conclusion, this study has demonstrated the effectiveness of DNA barcoding in identifying fish species in the Ili River Valley, providing valuable data to support the conservation of local fish resources.  相似文献   

4.
    
The genetic variability of whitefly (Bemisia tabaci) species, the vectors of cassava mosaic begomoviruses (CMBs) in cassava growing areas of Kenya, Tanzania, and Uganda, was investigated through comparison of partial sequences of the mitochondria cytochrome oxidase I (mtCOI) DNA in 2010/11. Two distinct species were obtained including sub‐Saharan Africa 1 (SSA1), comprising of two sub‐clades (I and II), and a South West Indian Ocean Islands (SWIO) species. Among the SSA1, sub‐clade I sequences shared a similarity of 97.8–99.7% with the published Uganda 1 genotypes, and diverged by 0.3–2.2%. A pairwise comparison of SSA1 sub‐clade II sequences revealed a similarity of 97.2–99.5% with reference southern Africa genotypes, and diverged by 0.5–2.8%. The SSA1 sub‐clade I whiteflies were widely distributed in East Africa (EA). In comparison, the SSA1 sub‐clade II whiteflies were detected for the first time in the EA region, and occurred predominantly in the coast regions of Kenya, southern and coast Tanzania. They occurred in low abundance in the Lake Victoria Basin of Tanzania and were widespread in all four regions in Uganda. The SWIO species had a sequence similarity of 97.2–97.7% with the published Reunion sequence and diverged by 2.3–2.8%. The SWIO whiteflies occurred in coast Kenya only. The sub‐Saharan Africa 2 whitefly species (Ug2) that was associated with the severe CMD pandemic in Uganda was not detected in our study.  相似文献   

5.
DNA barcoding provides an efficient method for species-level identifications. In this study, we have amplified partial sequences of mitochondrial cytochrome c oxidase I (COI) gene from 110 specimens of 45 species of Caenogastropoda collected from the coast along China to evaluate whether DNA barcodes can distinguish these species accurately. The average Kimura 2-parameter (K2P) distances within species, genera and families were 0.44%, 13.96% and 22.27%, respectively. Both the neighbour-joining tree and the Bayesian tree showed a clear discrimination of all the species in our study with highly supported clades. These results proved that the species of Caenogastropoda can be efficiently and accurately identified by DNA barcoding based on the COI gene.  相似文献   

6.
  总被引:6,自引:0,他引:6  
Some species of parasites occur on a wide range of hosts while others are restricted to one or a few host species. The host specificity of a parasite species is determined, in part, by its ability to disperse between host species. Dispersal limitations can be studied by exploring the genetic structure of parasite populations both within a single species of host and across multiple host species. In this study we examined the genetic structure in the mitochondrial cytochrome oxidase I (COI) gene of two genera of lice (Insecta: Phthiraptera) occurring on multiple sympatric species of doves in southern North and Central America. One genus, Columbicola, is generally less host-specific than the other, Physconelloides. For both genera we identified substantial genetic differentiation between populations of conspecific lice on different host species, generally 10-20% sequence divergence. This level of divergence is in the range of that often observed between species of these two genera. We used nested clade analysis to explore fine scale genetic structure within species of these feather lice. We found that species of Physconelloides exhibited more genetic structure, both among hosts and among geographical localities, than did species of Columbicola. In many cases, single haplotypes within species of Columbicola are distributed on multiple host species. Thus, the population genetic structure of species of Physconelloides reveals evidence of geographical differentiation on top of high host species specificity. Underlying differences in dispersal biology probably explain the differences in population genetic structure that we observed between Columbicola and Physconelloides.  相似文献   

7.
    
The fruit fly Bactrocera latifrons (Hendel) is an important pest of commercially significant plants such as chili, tomato and eggplant. The species is native to South and Southeast Asia, but has now invaded Japan, Hawaii and Africa. In this study, mitochondrial DNA sequences were used to infer genetic structure and demographic history of B. latifrons. The efficiency of DNA barcodes for identification of B. latifrons was also tested. Ninety‐three specimens infesting four host‐plant species were obtained from 11 sampling locations in Thailand. The mitochondrial haplotype network revealed no major divergent lineage, which was consistent with a phylogenetic analysis that found strong support for the monophyly of B. latifrons. Population pairwise FST revealed that most (65%) comparisons were not significantly different, suggesting a high rate of gene flow. Analysis of molecular variance (amova ) found no significant genetic differentiation among populations from different host‐plant species. Sharing of several haplotypes among flies from different host‐plants indicates that the flies were moved freely across the plant species. Demographic history analysis revealed that the population has undergone recent expansion dating back to the end of the last glaciation. Thus, the results indicate that both ongoing and historical factors have played important roles in determining the genetic structure and diversity of B. latifrons. DNA barcoding analysis revealed that B. latifrons specimens were clearly differentiated from other species with 100% correct identification. Therefore, cytochrome oxidase I (COI) barcoding sequences could be effectively used to identify this important pest species, which could encourage monitoring and control efforts for this species.  相似文献   

8.
Bemisia tabaci (Gennadius) is considered to be the most economically important pest insect worldwide. The invasive variant, the Q biotype of B. tabaci was first identified in 2004, and has caused significant crop yield losses in Japan. The distribution and molecular characterization of the different biotypes of B. tabaci in Japan have been little investigated. In this study, B. tabaci populations were sampled from the Japanese Archipelago, the Amami Archipelago and the Ryukyu Islands between 2004 and 2008, and the nucleotide sequences of their mitochondrial cytochrome oxidase I genes were determined. Bayesian phylogenetic relationship analysis provided the first molecular evidence that the indigenous Japanese populations could be separated into four distinct genetic groups. One major native population from the Japanese Archipelago, given the genetic group name Lonicera japonica, was separated into an independent group, distinct from the other genetic groups. The second major population, the Nauru biotype in the Asia II genetic group, was identified in the Amami Archipelago and the Ryukyu Islands. Two distinct minor genetic groups, the Asia I and the China, were also identified. One invasive B‐related population belonging to the Mediterranean/Asia Minor/Africa genetic group has been identified in Honshu. All lineages generated by the phylogenetic analyses were supported by high posterior probabilities. These distinct indigenous B. tabaci populations developed in Japan under geographical and/or biological isolation, prior to recent invasions of the B and Q biotypes.  相似文献   

9.
    
In the present study, partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene of 22 island populations of the springtail Homidia socia in the Thousand Island Lake were sequenced. Across all sequences, 37 haplotypes were identified for the 510‐bp mitochondrial (mt) DNA COI gene. Haplotype 2 was the most common, and was distributed in the most of the 22 island populations. Haplotype diversity ranged from 0.065 to 0.733, and the total genetic diversity was 0.56216. The genetic characteristics of the 22 island populations were analyzed using the fixation index and gene flow, with values of 0.00043–0.94900 and 0.02703–703.72540, respectively. Comparison between (island area and isolations) with population genetic diversity revealed that there were no significant correlations between them, except for a significant correlation between the number of haplotypes and island area. Mantel tests showed that there was no significant correlation between geographic distance and genetic distance among various groups. All the results indicated that there were no obvious relationships between island characteristics and the genetic diversity of the springtails. We consider that the low dispersal capacity of springtails and the island patches surrounded by water in the Thousand Island Lake are the major factors affecting the genetic diversity of H. socia.  相似文献   

10.
    
Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is the vector of cassava mosaic geminiviruses (CMGs), which are the main production constraint to cassava [Manihot esculenta Crantz (Euphorbiaceae)], both in Uganda and elsewhere in Africa. Two B. tabaci genotype clusters, Ug1 and Ug2, differentiated at 8% nucleotide (nt) divergence within the mitochondrial cytochrome oxidase I (mtCOI) gene, have been shown to occur on cassava in Uganda. However, the role of alternative hosts in the ecology of cassava B. tabaci genotypes and their possible involvement in the epidemiology of cassava mosaic disease (CMD) in Uganda remain unknown. In this study, we investigated the restriction of cassava B. tabaci genotypes to cassava and the colonization of alternative host species in select cassava‐growing areas of the country in 2003 and 2004. Bemisia tabaci adults and 4th instar nymphs were collected from cassava and 11 other cultivated and uncultivated species occurring adjacent to the sampled cassava fields. Phylogenetic analysis of mtCOI sequences revealed that only a single genotype cluster, Ug1, was present on both cassava and non‐cassava plant species sampled in this study. The Ug1 genotypes (n = 49) shared 97–99% nt identity with the previously described cassava‐associated B. tabaci populations in southern Africa, and were ~8% and ~13% divergent from Ug2 and the ‘Ivory Coast cassava’ genotypes in Uganda and Ivory Coast, respectively. The Ug1 genotypes occurred (as adults) on all 12 source‐plant species sampled. However, based on the presence of B. tabaci 4th instar nymphs, the Ug1 genotypes (n = 13) colonized cassava and five other non‐cassava plant species: Manihot glaziovii, Jatropha gossypifolia, Euphorbia heterophylla, Aspilia africana, and Abelmoschus esculentus, suggesting that cassava B. tabaci (Ug1 genotypes) are not restricted to cassava in Uganda. No Ug2‐like genotypes were detected on any of the plant species sampled, including cassava, in this study. The identification of additional hosts for at least one genotype cluster, Ug1, known also to colonize cassava, and which was hitherto thought to be ‘cassava‐restricted’ may have important epidemiological significance for the spread of CMGs in Uganda.  相似文献   

11.
    
Extensive population structuring is known to occur in Anopheles darlingi , the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation–dispersal–drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 854–866.  相似文献   

12.
    
The population structure of the edible Atlanto-Mediterranean sea urchin Paracentrotus lividus is described by analysing sequence variation in a fragment of the mitochondrial gene cytochrome c oxidase subunit I in 127 individuals from 12 localities across south-west Europe. The study revealed high levels of genetic diversity but low levels of genetic structure, suggesting a large degree of gene flow between populations and panmixis within each, the Mediterranean and Atlantic basins. However, we found significant genetic differentiation between the two basins probably due to restricted gene flow across the geographical boundary imposed by the area of the Strait of Gibraltar. Populations of P. lividus appeared to have experienced a recent demographic expansion in the late Pleistocene. We provide new evidence on the population structure of this commercial species, predicting a healthy stock of this sea urchin on the Mediterranean and Atlantic coasts.  相似文献   

13.
    
Human impacts on genetic diversity are poorly understood yet critical to biodiversity conservation. We used 175 247 COI sequences collected between 1980 and 2016 to assess the global effects of land use and human density on the intraspecific genetic diversity of 17 082 species of birds, fishes, insects and mammals. Human impacts on mtDNA diversity were taxon and scale‐dependent, and were generally weak or non‐significant. Spatial analyses identified weak latitudinal diversity gradients as well as negative effects of human density on insect diversity, and negative effects of intensive land use on fish diversity. The observed effects were predominantly associated with species turnover. Time series analyses found nearly an equal number of positive and negative temporal trends in diversity, resulting in no net monotonic trend in diversity over this time period. Our analyses reveal critical data and theory gaps and call for increased efforts to monitor global genetic diversity.  相似文献   

14.
  总被引:5,自引:0,他引:5  
Numerous planktonic species have disjunct distribution patterns in the world's oceans. However, it is unclear whether these are truly unconnected by gene flow, or whether they are composed of morphologically cryptic species. The marine planktonic chaetognath Sagitta setosa Müller has a discontinuous geographic distribution over the continental shelf in the northeastern Atlantic, Mediterranean Sea, and Black Sea. Morphological variation between these populations has been described, but overlaps and is therefore unsuitable to determine the degree of isolation between populations. To test whether disjunct populations are also genetically disjunct, we sequenced a 504-bp fragment of mitochondrial DNA comprising the cytochrome oxidase II region of 86 individuals. Sequences were highly variable; each represented a different haplotype. Within S. setosa, sequence divergence ranged from 0.2 to 8.1% and strong phylogeographic structure was found, with four main groups corresponding to the northeastern Atlantic, Mediterranean Sea (including Ligurian Sea, Tyrrhenian Sea and Gulf of Gabes), Adriatic Sea, and Black Sea. Two of these (Atlantic and Black Sea) were resolved as monophyletic clades, thus gene flow between disjunct populations of S. setosa has been extremely limited and lineage sorting has taken place. The deepest divergence was between Atlantic and Mediterranean/Black Sea populations followed by a split between Mediterranean and Black Sea populations. The Mediterranean/Black Sea clade comprised three groups, with the Adriatic Sea as the most likely sister clade of the Black Sea. These data are consistent with a colonization of the Black Sea from the Mediterranean. Furthermore, a possible cryptic species was found in the Black Sea with 23.1% sequence divergence from S. setosa. Two possibilities for the evolutionary origin of this species are proposed, namely, that it represents a relict species from the ancient Paratethys, or that it represents another chaetognath species that colonized the Black Sea more recently. Even though the exact timing of disjunction of S. setosa populations remains unclear, on the basis of the geological and paleoclimatic history of the European basins and our estimates of net nucleotide divergence, we suggest that disjunct populations arose through vicariance resulting from the cyclical changes in temperature and sea levels during the Pleistocene. We conclude that these populations have remained disjunct, not because of limited dispersal ability, but because of the inability to maintain viable populations in suboptimal, geographically intermediate areas.  相似文献   

15.
    
Chinese sea bass (Lateolabrax maculatus), an important commercial and recreational fishery species in China, whose natural resources have decreased dramatically for decades due to overfishing and environmental changes. To provide guidelines for the source conservation and management, genetic diversity and population structure of L. maculatus were analyzed based on the mitochondrial cytochrome oxidase subunit I (COI) gene. Totally 192 individuals were sampled from five locations: Qingdao (QD), Chongming (CM), Dongtou (DT), Lieyu (LY) and Fangcheng (FC). After sequencing of a 586 bp fragment of COI gene, 20 haplotypes were defined. H4 (haplotype 4) and H8 were the dominant haplotypes and existed in all populations. Haplotype diversity (Hd) and nucleotide diversity (π) of each population ranged from 0.572 to 0.721 and from 0.00129 to 0.00271, respectively. The highest Hd and π were found in DT and LY populations, while the lowest value of Hd and π were in the QD population. Genetic distance ranged from 0.0031 to 0.0027 within populations and from 0.0018 to 0.0035 between populations. Analysis of molecular variance (AMOVA) revealed that significant genetic divergence was found in QD and FC populations. In addition, neutrality tests and mismatch distribution analysis indicated that this species experienced potential population expansion events.  相似文献   

16.
The DNA sequence of the cytochrome oxidase subunit I ( COX I) gene (1059 bp), was determined in a number of heterokont algae, including five species of the Phaeophyceae [ Chorda filum (Linnaeus) Stackhouse, Colpomenia bullosa (Saunders) Yamada, Ectocarpus sp., Pseudochorda nagaii (Tokida) Inagaki, Undaria pinnatifida (Harvey) Suringar], and a member of the Raphidophyceae [ Chattonella antiqua (Hada) Ono]. The distribution of a deviant mitochondrial code, the AUA codon for methionine (AUA/Met), which was previously reported in the Xanthophyceae, was inferred from these COX I sequences. Comparative analyses of these sequences revealed that all the algae described above bear the universal genetic code, including the assignment for the AUA codon. A phylogenetic tree was constructed using the obtained sequences along with already-published COX I sequences of various heterokont algae. The clusters of the Xanthophyceae and the Phaeophyceae were resolved as sister groups with high bootstrap support, excluding a bacillariophycean species, a raphidophycean species, and three species of the Eustigmatophyceae. Taking the distribution of the deviant code and the COX I phylogenetic tree together, the genetic code change most probably occurred in an ancestor of the Xanthophyceae after it had branched off from the Phaeophyceae.  相似文献   

17.
The use of beneficial organisms to help control pests and pathogens in field and greenhouse crops is constantly increasing. Insects and mites are commonly used as beneficial organisms and, nowadays, rearing companies have to produce them in large quantities. Because of the peculiarities of laboratory culture conditions, the quality of lab-reared organisms generally degrades over time. To maintain high fitness levels, cultures are refreshed with field specimens at regular intervals. However, this bears the risk of contaminating laboratory cultures with species or strains other than the intended natural enemy. To ensure that the correct species is produced and also to facilitate surveys after field release, we have developed a diagnostic microarray for identification of beneficial species. Probes have been designed from the different haplotypes of a fragment of the mitochondrial cytochrome oxidase I (COI) gene of each species. Hybridization of labeled PCR amplicons of COI on the microarray chip allows precise identification of 28 economically relevant arthropod species.  相似文献   

18.
The gene encoding cytochrome c-553 from Desulfovibrio vulgaris (Miyazaki F) was cloned using a synthetic oligodeoxyribonucleotide probe. The nucleotide sequence indicated that cytochrome c-553 was synthesized as a precursor protein with an NH2-terminal signal sequence of 23 residues. In the cloned DNA fragment, there are three other open reading frames whose products have 191, 157, 541 amino acid residues, respectively. The putative ORF-4 product is highly homologous with the cytochrome c oxidase subunit I from various organisms.  相似文献   

19.
DNA metabarcoding enables efficient characterization of species composition in environmental DNA or bulk biodiversity samples, and this approach is making significant and unique contributions in the field of ecology. In metabarcoding of animals, the cytochrome c oxidase subunit I (COI) gene is frequently used as the marker of choice because no other genetic region can be found in taxonomically verified databases with sequences covering so many taxa. However, the accuracy of metabarcoding datasets is dependent on recovery of the targeted taxa using conserved amplification primers. We argue that COI does not contain suitably conserved regions for most amplicon-based metabarcoding applications. Marker selection deserves increased scrutiny and available marker choices should be broadened in order to maximize potential in this exciting field of research.  相似文献   

20.
The genus Sitophilus (Coleoptera: Curculionidae) encompasses species of great economic importance as stored grain pests worldwide. Among these species, the maize and the rice weevils (Sitophilus zeamais and Sitophilus oryzae, respectively) are partic- ularly important in warmer climates. These two weevils exhibit closely morphological and ecological resemblance making difficult their proper identification and recognition of their distribution in grain-producing regions. Both species are recorded in South America and particularly in Brazil, but their respective distribution and prevalence were not yet assessed in the region. Therefore, several insect samples throughout Brazil were collected and subjected to morphological identification using male genitalia and also using molec- ular identification with species-specific primers designed for clear recognition of both the species. The primers were designed for the specific amplification of a gene fragment of the cytochrome oxidase subunit I, which exhibited high specificity during our prelimi- nary experiments with insects from six populations of known species (either S. zeamais or S. oryzae). Both identification strategies provided the same results indicating preva- lence of the maize weevil S. zeamais throughout the country. Two hypotheses may explain such prevalence: (i) the likely host preference ofS. zeamais for maize because this is the most cultivated cereal in Brazil, and (ii) the prevalence ofS. zeamais in tropical regions as compared with S. oryzae, which is more disseminated in subtropical and temperate regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号