首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The outcome of species interactions may manifest differently at different spatial scales; therefore, our interpretation of observed interactions will depend on the scale at which observations are made. For example, in ladybeetle–aphid systems, the results from small‐scale cage experiments usually cannot be extrapolated to landscape‐scale field observations. To understand how ladybeetle–aphid interactions change across spatial scales, we evaluated predator–prey interactions in an experimental system. The experimental habitat consisted of 81 potted plants and was manipulated to facilitate analysis across four spatial scales. We also simulated a spatially explicit metacommunity model parallel to the experiment. In the experiment, we found that the negative effect of ladybeetles on aphids decreased with increasing spatial scales. This pattern can be explained by ladybeetles strongly suppressing aphids at small scales, but not colonizing distant patches fast enough to suppress aphids at larger scales. In the experiment, the positive effects of aphids on ladybeetles were strongest at three‐plant scale. In a model scenario where predators did not have demographic dynamics, we found, consistent with the experiment, that both the effects of ladybeetles on aphids and the effects of aphids on ladybeetles decreased with increasing spatial scales. These patterns suggest that dispersal was the primary cause of ladybeetle population dynamics in our experiment: aphids increased ladybeetle numbers at smaller scales because ladybeetles stayed in a patch longer and performed area‐restricted searches after encountering aphids; these behaviors did not affect ladybeetle numbers at larger spatial scales. The parallel experimental and model results illustrate how predator–prey interactions can change across spatial scales, suggesting that our interpretation of observed predator–prey dynamics would differ if observations were made at different scales. This study demonstrates how studying ecological interactions at a range of scales can help link the results of small‐scale ecological experiments to landscape‐scale ecological problems.  相似文献   

2.
Because N is frequently the most limiting mineral macronutrient for plants in terrestrial ecosystems, modulating N input may have ecological consequences through trophic levels. Thus, in agro‐ecosystems, the success of natural enemies may depend not only from their herbivorous hosts but also from the host plant whose qualities may be modulated by N input. We manipulated foliar N concentrations by providing to Camelina sativa plants three different nitrogen rates (control, optimal, and excessive). We examined how the altered host‐plant nutritional quality influenced the performances of two aphid species, the generalist green peach aphid, Myzus persicae, and the specialist cabbage aphid, Brevicoryne brassicae, and their common parasitoid Diaeretiella rapae. Both N inputs led to increased N concentrations in the plants but induced contrasted concentrations within aphid bodies depending on the species. Compared to the control, plant biomass increased when receiving the optimal N treatment but decreased under the excessive treatment. Performances of M. persicae improved under the optimal treatment compared to the control and excessive treatments whereas B. brassicae parameters declined following the excessive N treatment. In no‐choice trials, emergence rates of D. rapae developing in M. persicae were higher on both optimum and excessive N treatments, whereas they remained stable whatever the treatment when developing in B. brassicae. Size of emerging D. rapae females was positively affected by the treatment only when it developed in M. persicae on the excessive N treatment. This work showed that contrary to an optimal N treatment, when N was delivered in excess, plant suitability was reduced and consequently affected negatively aphid parameters. Surprisingly, these negative effects resulted in no or positive consequences on parasitoid parameters, suggesting a buffered effect at the third trophic level. Host N content, host suitability, and dietary specialization appear to be major factors explaining the functioning of our studied system.  相似文献   

3.
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.  相似文献   

4.
Rape (Brassica napus L.) is foraged intensively by honey bees (Apis mellifera). Pesticide applications during bloom are sometimes combined with foliar boron fertilizer applications. Boron has insecticidal properties, and therefore, risk to honey bees cannot be excluded. This study was conducted to test whether foliar boron fertilizers could be hazardous for bees under real field conditions. Six colonies were transferred to a rape field in bloom which was treated with boron (1 kg/ha). Six control colonies were transferred to an untreated rape field approximately 7 km away. Performance parameters of the colonies were measured. Samples of honey and beebread were collected from all colonies before and after boron fertilizer application. The contents of boron and of Al, Cd, Cr, Fe, K, Mn, Ni, P, Pb, S and Zn were measured in honey by inductively coupled plasma mass spectroscopy (ICP MS) and by ICP–atomic emission spectroscopy (ICP‐OES). No significant differences were found in honey yield (P = 0.622), number of capped brood (P = 0.089), number of uncapped brood (P = 0.123) or number of bees (P = 0.87). Application of boron fertilizer did not affect the concentration of boron in honey (P = 0.656) or beebread (P = 0.665). The concentrations of other elements confirmed the suitability of rape nectar for bee nutrition. This study suggests that the application of foliar boron fertilizers in blooming rape is not hazardous for bee colonies.  相似文献   

5.
Shigella deploys a unique mechanism to manipulate macrophage pyroptosis by delivering the IpaH7.8 E3 ubiquitin ligase via its type III secretion system. IpaH7.8 ubiquitinates glomulin (GLMN) and elicits its degradation, thereby inducing inflammasome activation and pyroptotic cell death of macrophages. Here, we show that GLMN specifically binds cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1 and cIAP2), members of the inhibitor of apoptosis (IAP) family of RING‐E3 ligases, which results in reduced E3 ligase activity, and consequently inflammasome‐mediated death of macrophages. Importantly, reducing the levels of GLMN in macrophages via IpaH7.8, or siRNA‐mediated knockdown, enhances inflammasome activation in response to infection by Shigella, Salmonella, or Pseudomonas, stimulation with NLRP3 inflammasome activators (including SiO2, alum, or MSU), or stimulation of the AIM2 inflammasome by poly dA:dT. GLMN binds specifically to the RING domain of both cIAPs, which inhibits their self‐ubiquitination activity. These findings suggest that GLMN is a negative regulator of cIAP‐mediated inflammasome activation, and highlight a unique Shigella stratagem to kill macrophages, promoting severe inflammation.  相似文献   

6.
Since the late 19th century, exotic ladybirds (Coleoptera: Coccinellidae) have been used extensively for suppressing herbivorous insects of economic importance. In recent decades, the introduction of non‐native biological control (BC) agents has been greatly limited due to the awareness of the potential non‐target effects of introductions. Nonetheless, recent episodes of biological invasions of economically important pests have raised the need to carefully consider whether the expected benefits of pest control go beyond the possible environmental risks of introduction. To better understand the factors that contributed to successful BC programs, here we review the literature behind classical and augmentative BC using exotic ladybirds. Additionally, by means of case studies, we discuss the BC efficacy of selected exotic species, e.g., Coccinella septempunctata L., Harmonia axyridis (Pallas), and Hippodamia variegata (Goeze), and their position within the communities of predators in the introduced areas of USA, Canada, and Chile. In Europe, much of the research on exotic ladybirds has been conducted on the undesired impact of H. axyridis. Therefore, we summarize the risk assessment data for this species and review the field research investigating the ecological impact on European aphidophagous predators. According to the BIOCAT database of classical BC programs, 212 ladybird species belonging to 68 genera have been released in about 130 years of BC activity, with 14.6% of introductions having resulted in partial, substantial, or complete control of the target pest. However, because post‐release evaluation of establishment and BC success has not always been conducted, this rate could underestimate the successful cases. Among other factors, ladybird establishment and pest suppression mostly depend on (1) intrinsic factors, i.e., high voracity, synchronized predator‐prey life cycle, and high dispersal ability, and (2) extrinsic factors, i.e., adaptability to the new environment and landscape composition. This review contributes to improved understanding of ladybirds as exotic BC agents.  相似文献   

7.
Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72. As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS‐FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre‐mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.  相似文献   

8.
9.
A major goal in the study of mutualism is to understand how co‐operation is maintained when mutualism may potentially turn into parasitism. Although certain mechanisms facilitate the persistence of mutualism, parasitic species have repeatedly evolved from mutualistic ancestors. However, documented examples of mutualism reversals are still rare. Leafflowers (Phyllantheae; Phyllanthaceae) include approximately 500 species that engage in obligate mutualism with leafflower moths (Epicephala; Gracillariidae), which actively pollinate flowers, and whose larvae feed on the resulting seeds. We found that the Taiwanese population of the Phyllanthus reticulatus species complex was associated with six sympatric Epicephala species, of which three were derived parasites that induced gall formation on flowers/buds and produced no seeds. Notably, two parasitic species have retained mutualistic pollination behaviour, suggesting that the parasitism was likely not selected for to reduce the cost of mutualism. We propose that the galling habit evolved as an adaptation to escape parasitism by a specialized braconid wasp. The tough gall produced by one species was almost free of braconid parasitism, and the swollen gall induced by the other species probably prevents attack as a result of the larger airspace inside the gall. Our findings suggest that the presence of a third‐party partner can greatly influence the evolutionary fate of mutualisms, regardless of whether the pairwise interaction continues to favour co‐operation.  相似文献   

10.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

11.
Few studies report on the in vivo requirement for hematopoietic niche factors in the mammalian embryo. Here, we comprehensively analyze the requirement for Kit ligand (Kitl) in the yolk sac and aorta–gonad–mesonephros (AGM) niche. In‐depth analysis of loss‐of‐function and transgenic reporter mouse models show that Kitl‐deficient embryos harbor decreased numbers of yolk sac erythro‐myeloid progenitor (EMP) cells, resulting from a proliferation defect following their initial emergence. This EMP defect causes a dramatic decrease in fetal liver erythroid cells prior to the onset of hematopoietic stem cell (HSC)‐derived erythropoiesis, and a reduction in tissue‐resident macrophages. Pre‐HSCs in the AGM require Kitl for survival and maturation, but not proliferation. Although Kitl is expressed widely in all embryonic hematopoietic niches, conditional deletion in endothelial cells recapitulates germline loss‐of‐function phenotypes in AGM and yolk sac, with phenotypic HSCs but not EMPs remaining dependent on endothelial Kitl upon migration to the fetal liver. In conclusion, our data establish Kitl as a critical regulator in the in vivoAGM and yolk sac endothelial niche.  相似文献   

12.
The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time‐dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time‐dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (ΔTs(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to ΔTs(n). However, the first years after establishing the willow plantation it presented a warming contribution to ΔTs(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.  相似文献   

13.
Symbioses are modelled as evolutionarily and ecologically variable with fitness outcomes for hosts shifting on a continuum from mutualism to parasitism. In a classic example, rhizobia fix atmospheric nitrogen for legume hosts in exchange for photosynthetic carbon. Rhizobial infection often enhances legume growth, but hosts also incur interaction costs because of root tissues and or metabolites needed to support symbionts in planta. Rhizobia exhibit genetic variation in symbiotic effectiveness, and ecological changes in light or mineral nitrogen availability can also alter the benefits of rhizobial infection for hosts. The net effects of symbiosis thus can range from mutualistic to parasitic in a context‐dependent manner. We tested the extent of the mutualism–parasitism continuum in the legume–rhizobium symbiosis and the degree to which host investment can shape its limits. We infected Lotus strigosus with sympatric Bradyrhizobium genotypes that vary in symbiotic effectiveness. Inoculations occurred under different mineral nitrogen and light regimes spanning ecologically relevant ranges. Net growth benefits of Bradyrhizobium infection varied for Lotus and were reduced or eliminated dependent on Bradyrhizobium genotype, mineral nitrogen and light availability. But we did not detect parasitism. Lotus proportionally reduced investment in Bradyrhizobium as net benefit from infection decreased. Lotus control occurred primarily after infection, via fine‐scale modulation of nodule growth, as opposed to control over initial nodulation. Our results show how divestment of symbiosis by Lotus can prevent shifts to parasitism.  相似文献   

14.
15.
During pregnancy, up‐regulation of heparin‐binding (HB‐) EGF and cyclooxygenase‐2 (COX‐2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G‐protein‐coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA‐producing enzyme autotaxin (ATX) in pregnant mice leads to HB‐EGF and COX‐2 down‐regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up‐regulation of HB‐EGF and COX‐2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre‐implantation‐stage embryos, respectively. Our results indicate that ATX–LPA–LPA3 signaling at the embryo‐epithelial boundary induces decidualization via the canonical HB‐EGF and COX‐2 pathways.  相似文献   

16.
Characteristically, land plants exhibit a life cycle with an ‘alternation of generations’ and thus alternate between a haploid gametophyte and a diploid sporophyte. At meiosis and fertilisation the transitions between these two ontogenies take place in distinct single stem cells. The evolutionary invention of an embryo, and thus an upright multicellular sporophyte, in the ancestor of land plants formed the basis for the evolution of increasingly complex plant morphologies shaping Earth's ecosystems. Recent research employing the moss Physcomitrella patens revealed the homeotic gene BELL1 as a master regulator of the gametophyte‐to‐sporophyte transition. Here, we discuss these findings in the context of classical botanical observations.  相似文献   

17.
18.
19.
The development of multicellular plants relies on the ability of their cells to exchange solutes, proteins and signalling compounds through plasmodesmata, symplasmic pores in the plant cell wall. The aperture of plasmodesmata is regulated in response to developmental cues or external factors such as pathogen attack. This regulation enables tight control of symplasmic cell‐to‐cell transport. Here we report on an elegant non‐invasive method to quantify the passive movement of protein between selected cells even in deeper tissue layers. The system is based on the fluorescent protein DRONPA‐s, which can be switched on and off repeatedly by illumination with different light qualities. Using transgenic 35S::DRONPA‐s Arabidopsis thaliana and a confocal microscope it was possible to activate DRONPA‐s fluorescence in selected cells of the root meristem. This enabled us to compare movement of DRONPA‐s from the activated cells into the respective neighbouring cells. Our analyses showed that pericycle cells display the highest efflux capacity with a good lateral connectivity. In contrast, root cap cells showed the lowest efflux of DRONPA‐s. Plasmodesmata of quiescent centre cells mediated a stronger efflux into columella cells than into stele initials. To simplify measurements of fluorescence intensity in a complex tissue we developed software that allows simultaneous analyses of fluorescence intensities of several neighbouring cells. Our DRONPA‐s system generates reproducible data and is a valuable tool for studying symplasmic connectivity.  相似文献   

20.
QST, a measure of quantitative genetic differentiation among populations, is an index that can suggest local adaptation if QST for a trait is sufficiently larger than the mean FST of neutral genetic markers. A previous method by Whitlock and Guillaume derived a simulation resampling approach to statistically test for a difference between QST and FST, but that method is limited to balanced data sets with offspring related as half‐sibs through shared fathers. We extend this approach (i) to allow for a model more suitable for some plant populations or breeding designs in which offspring are related through mothers (assuming independent fathers for each offspring; half‐sibs by dam); and (ii) by explicitly allowing for unbalanced data sets. The resulting approach is made available through the R package QstFstComp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号