首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speciation, the process by which one species evolves into two or more, is a major focus of ongoing debate, particularly regarding the geographic context in which it occurs. Geographic models of speciation tend to fall into discrete categories, typically referred to as allopatric, parapatric and sympatric speciation, according to whether two groups evolve reproductive isolation while geographically isolated, differentiated but connected by gene flow, or completely co‐occurring. Yet molecular studies indicate that full development of reproductive isolation can take very long compared with the timescale at which climatic oscillations occur, such that the geographic context of differentiating forms might change often during the long process to full species. Studies of genetic relationships across the ranges of organisms with low‐dispersal distances have the potential to reveal these complex histories. In a particularly elegant example in this issue, Dufresnes et al. ( 2016 ) use genetic variation and ecological niche modelling to show that a ring of populations of the eastern tree frog (Hyla orientalis) surrounding the Black Sea had a complex history of geographic differentiation. Alternating phases of geographic fragmentation and phases of gene flow between neighbouring populations have produced a pattern of gradual genetic change connecting the western, southern and eastern sides of the ring, with the northwestern and northeastern forms being most differentiated. In the north, a population in Crimea appears to have been produced through mixture of the two extreme forms. The overall genetic relationships are reminiscent of those found in ring species, which have been used as prime demonstrations of the process of speciation. The difference, however, is that the terminal forms appear to have mixed rather than be reproductively isolated, although more research is needed to infer whether there might be some reproductive isolation on the northern side of the ring.  相似文献   

2.
3.
The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings (‘Janzen–Connell’ effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest.  相似文献   

4.
Drought‐induced tree mortality is occurring across all forested continents and is expected to increase worldwide during the coming century. Regional‐scale forest die‐off influences terrestrial albedo, carbon and water budgets, and land‐surface energy partitioning. Although increased temperatures during drought are widely identified as a critical contributor to exacerbated tree mortality associated with “global‐change‐type drought”, corresponding changes in vapor pressure deficit (D) have rarely been considered explicitly and have not been disaggregated from that of temperature per se. Here, we apply a detailed mechanistic soil–plant–atmosphere model to examine the impacts of drought, increased air temperature (+2°C or +5°C), and increased vapor pressure deficit (D; +1 kPa or +2.5 kPa), singly and in combination, on net primary productivity (NPP) and transpiration and forest responses, especially soil moisture content, leaf water potential, and stomatal conductance. We show that increased D exerts a larger detrimental effect on transpiration and NPP, than increased temperature alone, with or without the imposition of a 3‐month drought. Combined with drought, the effect of increased D on NPP was substantially larger than that of drought plus increased temperature. Thus, the number of days when NPP was zero across the 2‐year simulation was 13 or 14 days in the control and increased temperature scenarios, but increased to approximately 200 days when D was increased. Drought alone increased the number of days of zero NPP to 88, but drought plus increased temperature did not increase the number of days. In contrast, drought and increased D resulted in the number of days when NPP = 0 increasing to 235 (+1 kPa) or 304 days (+2.5 kPa). We conclude that correct identification of the causes of global change‐type mortality events requires explicit consideration of the influence of D as well as its interaction with drought and temperature.  相似文献   

5.
Species distribution models for Amazonian trees have mostly been produced at scales and resolutions that are too broad and coarse for practical use in either conservation or forestry. On the other hand, several studies have shown that elevation and the medium‐resolution remote sensing data available via Landsat imagery can be successfully used to detect differences in plant species composition in Amazonia. Therefore, it seems likely that the same data can also be used to predict geographical distributions of individual taxa. Here we use remotely sensed data and a maximum entropy algorithm (MaxEnt) to generate landscape‐scale distribution models at 30‐m‐resolution for five economically important timber tree genera (Apuleia, Amburana, Crepidospermum, Dipteryx, and Manilkara). Individual Landsat Thematic Mapper bands and normalized difference vegetation index yielded acceptable model performance, and the use of averaging filters (3 × 3 and 5 × 5 pixel low‐pass filters) improved model performance further. Including elevation as a predictor also improved model performance for all the genera. Our results suggest that it is possible to use Landsat bands and elevation as predictors for modeling the potential distribution of tree species in lowland Amazonia at a fine enough resolution to facilitate the practical management of forest resources.  相似文献   

6.
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.  相似文献   

7.
  • Steep climatic gradients boost morphological and physiological adjustments in plants, with consequences on performance. The three principal woody species of the Sierras Grandes Mountains of central Argentina have marked differences in sapling performance along their altitudinal distribution. We hypothesize that the steep gradient of climatic conditions across the species’ altitudinal distribution promotes trait differences between populations of different altitudes that are inherited by the following generation.
  • Seeds from different altitudes were exposed to three temperature regimes to assess differential germination responses. Saplings were then transplanted to a greenhouse to assess possible variations in attributes and performance after 18 months.
  • The three species showed differences in germination responses to temperature among altitudes and/or in sapling attributes and performance. In Maytenus boaria and Escallonia cordobensis, germination success was higher under high temperatures for the highest‐altitude, whereas lower temperatures boosted germination of the lowest altitudes. Polylepis australis showed no differences in germination among temperature treatments. In the greenhouse, saplings of the three species from intermediate altitudes showed high performance, whereas the upper and lower populations seemed to be adjusted to tolerating more stressful conditions (i.e., lower temperatures at the upper end and water stress at the lower end), showing lower performance toward both altitudinal limits.
  • These patterns agree with those described for saplings growing under field conditions, suggesting adjustments in response to environmental changes undergone by populations along the altitudinal range. The marked adjustments of populations to the local environment suggest a potentially high impact of climatic change on species distribution.
  相似文献   

8.
9.
10.
The genus Pseustes Fitzinger, 1843 is composed of three recognized species, Pseustes poecilonotus, P. shropshirei and P. sulphureus, which may be the largest sized colubrid snake in the New World. The group has a complex systematic history that has yet to be untangled using modern molecular phylogenetic approaches. The systematic position, within‐group diversity and distribution are therefore uncertain. We obtained samples of four species from multiple specimens across their distribution and analysed one nuclear and two mitochondrial genes to determine the phylogenetic placement of the genus and infer relationships among Pseustes lineages. We find strong support for the paraphyly of Pseustes with respect to the monotypic genus Spilotes, both of which are nested within a clade of at least 23 other New World Colubrinae genera. Based on our results, we formally revise the taxonomy of P. poecilonotus and P. sulphureus, resurrecting the taxon P. polylepis for populations of P. poecilonotus from South America and allocating P. sulphureus to the genus Spilotes which renders both genera monophyletic. Additionally, we identify two lineages that are putatively new and currently unrecognized species. Finally, the placement of P. sulphureus, the type species of Pseustes, in the genus Spilotes, requires the allocation of the senior synonym Phrynonax be considered for the remaining Pseustes taxa.  相似文献   

11.
Diversifying planted forests by increasing genetic and species diversity is often promoted as a method to improve forest resilience to climate change and reduce pest and pathogen damage. In this study, we used a young tree diversity experiment replicated at two sites in the UK to study the impacts of tree diversity and tree provenance (geographic origin) on the oak (Quercus robur) insect herbivore community and a specialist biotrophic pathogen, oak powdery mildew. Local UK, French, and Italian provenances were planted in monocultures, provenance mixtures, and species mixes, allowing us to test whether: (a) local and nonlocal provenances differ in their insect herbivore and pathogen communities, and (b) admixing trees leads to associational effects on insect herbivore and pathogen damage. Tree diversity had variable impacts on foliar organisms across sites and years, suggesting that diversity effects can be highly dependent on environmental context. Provenance identity impacted upon both herbivores and powdery mildew, but we did not find consistent support for the local adaptation hypothesis for any group of organisms studied. Independent of provenance, we found tree vigor traits (shoot length, tree height) and tree apparency (the height of focal trees relative to their surroundings) were consistent positive predictors of powdery mildew and insect herbivory. Synthesis. Our results have implications for understanding the complex interplay between tree identity and diversity in determining pest damage, and show that tree traits, partially influenced by tree genotype, can be important drivers of tree pest and pathogen loads.  相似文献   

12.
13.
14.
Understanding temporal variation in selection in natural populations is necessary to accurately estimate rates of divergence and macroevolutionary processes. Temporal variation in the strength and direction of selection on sex‐specific traits can also explain stasis in male and female phenotype and sexual dimorphism. I investigated changes in strength and form of viability selection (via predation by wasps) in a natural population of male and female tree crickets over 4 years. I found that although the source of viability stayed the same, viability selection affected males and females differently, and the strength, direction and form of selection varied considerably from year to year. In general, males experienced significant linear selection and significant selection differentials more frequently than females, and different male traits experienced significant linear selection each year. This yearly variation resulted in overall weak but significant convex selection on a composite male trait that mostly represented leg size and wing width. Significant selection on female phenotype was uncommon, but when it was detected, it was invariably nonlinear. Significant concave selection on traits representing female body size was observed in some years, as the largest and smallest females were preyed on less (the largest may have been too heavy for flying wasps to carry). Viability selection was significantly different between males and females in 2 of 4 years. Although viability selection via predation has the potential to drive phenotypic change and sexual dimorphism, temporal variation in selection may maintain stasis.  相似文献   

15.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

16.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.  相似文献   

17.
18.
In an ecosystem under simultaneous threat from multiple alien species, one invader may buffer the impact of another. Our surveys on a remote floodplain in the Kimberley region of north western Australia show that invasive chinee apple trees (Ziziphus mauritiana) provide critical refuge habitat for native rodents (pale field rats, Rattus tunneyi). Feral horses (Equus caballus) have trampled most of the remaining floodplain, but are excluded from the area around each chinee apple tree by thorny foliage. Although chinee apple trees constituted <10% of trees along our transects, they represented >50% of trees that harboured rat burrows. The mean number of burrows under each chinee apple tree was twice as high as under most other tree species, and we trapped more than seven times as many rats under chinee apple trees as under other types of trees. The extensive burrow systems under chinee apple trees contained female as well as male rats, whereas we only captured males around the smaller burrow systems under other tree species. Our data suggest that this invasive tree plays a critical role in the persistence of pale field rat populations in this degraded ecosystem, and that managers should maintain these trees (despite their alien origins) at least until feral horses have been removed.  相似文献   

19.
Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061–2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought‐prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future.  相似文献   

20.
Postglacial expansion to former range limits varies substantially among species of temperate deciduous forests in eastern Asia. Isolation hypotheses (with or without gene flow) have been proposed to explain this variance, but they ignore detailed population dynamics spanning geological time and neglect the role of life history traits. Using population genetics to uncover these dynamics across their Asian range, we infer processes that formed the disjunct distributions of Ginkgo biloba and the co‐occurring Cercidiphyllum japonicum (published data). Phylogenetic, coalescent, and comparative data suggest that Ginkgo population structure is regional, dichotomous (to west–east refugia), and formed ˜51 kya, resulting from random genetic drift during the last glaciation. This split is far younger than the north–south population structure of Cercidiphyllum (~1.89 Mya). Significant (recent) unidirectional gene flow has not homogenized the two Ginkgo refugia, despite 2Nm > 1. Prior to this split, gene flow was potentially higher, resulting in conflicting support for a priori hypotheses that view isolation as an explanation for the variation in postglacial range limits. Isolation hypotheses (with or without gene flow) are thus not necessarily mutually exclusive due to temporal variation of gene flow and genetic drift. In comparison with Cercidiphyllum, the restricted range of Ginkgo has been facilitated by uncompetitive life history traits associated with seed ecology, highlighting the importance of both demography and lifetime reproductive success when interpreting range shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号