首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Question: Does experimental warming, designed to simulate future warming of the Arctic, change the biomass allocation and mycorrhizal infection of tundra plants? Location: High Arctic tundra near Barrow, Alaska, USA (71°18′N 156°40′W). Methods: Above and below ground plant biomass of all species was harvested following 3–4 yr of 1‐2°C of experimental warming. Biomass allocation and arbuscular mycorrhizal infection were also examined in the two dominant species, Salix rotundifolia and Carex aquatilis. Results: Above‐ground biomass of graminoids increased in response to warming but there was no difference in total plant biomass or the ratio of above‐ground to below‐ground biomass for the community as a whole. Carex aquatilis increased above‐ground biomass and proportionally allocated more biomass above ground in response to warming. Salix rotundifolia increased the amount of above‐ and below‐ground biomass allocated per leaf in response to warming. Mycorrhizal infection rates showed no direct response to warming, but total abundance was estimated to have likely increased in response to warming owing to increased root biomass of S. rotundifolia. Conclusions: The community as a whole was resistant to short‐term warming and showed no significant changes in above‐ or below‐ground biomass despite significant increases in above‐ground biomass of graminoids. However, the patterns of biomass allocation for C. aquatilis and S. rotundifolia did change with warming. This suggests that long‐term warming may result in changes in the above‐ground to below‐ground biomass ratio of the community.  相似文献   

2.
3.
Eelgrass (Zostera marina) populations supply substantial amounts of organic materials to food webs in shallow coastal environments, provide habitat for many fishes and their larvae and abate erosion. The characterisation of eelgrass biomass dynamics is an important input for the assessment of the function and values for this important seagrass species. We here present original allometric methods for the non‐destructive estimation of above‐ground biomass of eelgrass. These assessments are based on measurements of lengths and areas of leaves and sheaths and mathematical models that can be identified by means of standard regression procedures. The models were validated by using data obtained from Z. marina meadows in the Punta Banda estuary B.C., Mexico, and in Jindong Bay, Korea. Using available data and concordance correlation index criteria we show that the values projected thorough the presented allometric paradigm reproduces observed values in a consistent way. The annual average value for observed above‐ground biomass was 1.46 ± 0.15 g shoot?1, while the corresponding calculated value was 1.40 ± 0.13 g shoot?1. We suggest that our method can be applied to other studies in which the architecture and growth form of leaves and sheaths are similar to those of eelgrass. This would provide reliable and simplified estimations of biomass while eliminating tedious laboratory processing and avoiding destructive sampling.  相似文献   

4.
5.
Aim To investigate large‐scale patterns of above‐ground and below‐ground biomass partitioning in grassland ecosystems and to test the isometric theory at the community level. Location Northern China, in diverse grassland types spanning temperate grasslands in arid and semi‐arid regions to alpine grasslands on the Tibetan Plateau. Methods We investigated above‐ground and below‐ground biomass in China's grasslands by conducting five consecutive sampling campaigns across the northern part of the country during 2001–05. We then documented the root : shoot ratio (R/S) and its relationship with climatic factors for China's grasslands. We further explored relationships between above‐ground and below‐ground biomass across different grassland types. Results Our results indicated that the overall R/S of China's grasslands was larger than the global average (6.3 vs. 3.7). The R/S for China's grasslands did not show any significant trend with either mean annual temperature or mean annual precipitation. Above‐ground biomass was nearly proportional to below‐ground biomass with a scaling exponent (the slope of log–log linear relationship between above‐ground and below‐ground biomass) of 1.02 across various grassland types. The slope did not differ significantly between temperate and alpine grasslands or between steppe and meadow. Main conclusions Our findings support the isometric theory of above‐ground and below‐ground biomass partitioning, and suggest that above‐ground biomass scales isometrically with below‐ground biomass at the community level.  相似文献   

6.
Abstract Current estimates of the total biomass in tropical rainforests vary considerably; this is due in large part to the different approaches that are used to calculate biomass. In this study we have used a canopy crane to measure the tree architectures in a 1 ha plot of complex mesophyll vine forest at Cape Tribulation, Australia. Methods were developed to measure and calculate the crown and stem biomass of six major species of tree and palm (Alstonia scholaris (Apocynaceae), Cleistanthus myrianthus (Euphorbiaceae), Endiandra microneura (Lauraceae), Myristica insipida (Myristicaceae), Acmena graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae)) using the unique access provided by the crane. This has allowed the first non‐destructive biomass estimate to be carried out for a forest of this type. Allometric equations which relate tree biomass to the measured variable ‘diameter at breast height’ were developed for the six species, and a general equation was also developed for trees on the plot. The general equation was similar in form to equations developed for tropical rainforests in Brazil and New Guinea. The species equations were applied at the level of families, the generalized equation was applied to the remaining species which allowed the biomass of a total of 680 trees to be calculated. This has provided a current estimate of 270 t ha−1 above‐ground biomass at the Australian Canopy Crane site; a value comparable to lowland rainforests in Panama and French Guiana. Using the same tree database seven alternative allometric equations (literature equations for tropical rainforests) were used to calculate the site biomass, the range was large (252–446 t ha−1) with only three equations providing estimates within 34 t ha−1 (12.5%) of the site value. Our use of multiple species‐specific allometric equations has provided a site estimate only slightly larger (1%) than that obtained using allometric equations developed specifically for tropical wet rainforests. We have demonstrated that it is possible to non‐destructively measure the biomass in a complex forest using an on‐site canopy crane. In conjunction the development of crown maps and a detailed tree architecture database allows changes in forest structure to be followed quantitatively.  相似文献   

7.
8.
9.
10.
Tropical peat swamp forests (PSFs) are globally important carbon stores under threat. In Southeast Asia, 35% of peatlands had been drained and converted to plantations by 2010, and much of the remaining forest had been logged, contributing significantly to global carbon emissions. Yet, tropical forests have the capacity to regain biomass quickly and forests on drained peatlands may grow faster in response to soil aeration, so the net effect of humans on forest biomass remains poorly understood. In this study, two lidar surveys (made in 2011 and 2014) are compared to map forest biomass dynamics across 96 km2 of PSF in Kalimantan, Indonesia. The peatland is now legally protected for conservation, but large expanses were logged under concessions until 1998 and illegal logging continues in accessible portions. It was hypothesized that historically logged areas would be recovering biomass while recently logged areas would be losing biomass. We found that historically logged forests were recovering biomass near old canals and railways used by the concessions. Lidar detected substantial illegal logging activity—579 km of logging canals were located beneath the canopy. Some patches close to these canals have been logged in the 2011–2104 period (i.e. substantial biomass loss) but, on aggregate, these illegally logged regions were also recovering. Unexpectedly, rapid growth was also observed in intact forest that had not been logged and was over a kilometre from the nearest known canal, perhaps in response to greater aeration of surface peat. Comparing these results with flux measurements taken at other nearby sites, we find that carbon sequestration in above‐ground biomass may have offset roughly half the carbon efflux from peat oxidation. This study demonstrates the power of repeat lidar survey to map fine‐scale forest dynamics in remote areas, revealing previously unrecognized impacts of anthropogenic global change.  相似文献   

11.
12.
1. Plants take nutrients for their growth and reproduction from not only soil but also symbiotic microbes in the rhizosphere, and therefore below‐ground microbes may indirectly influence the above‐ground arthropod community through changes in the quality and quantity of plants. 2. Rhizobia are root‐nodulating bacteria that provide NH4+ to legume plants. We examined bottom‐up effects of rhizobia on the community properties of the arthropods on host plants, using a root‐nodulating soybean strain (R+) and a non‐nodulating strain (R?) in a common garden. 3. R+ plants grew larger and produced a greater number of leaves than R? plants. We observed 28 species of herbivores and three taxonomic groups of predators on R+ and R? plants. The herbivorous species were classified into sap feeders (12 species) and chewers (16 species). 4. The species richness of overall herbivores, sap feeders, and chewers on R+ plants was greater than that on R? plants. Rhizobia positively affected the abundance of chewers. 5. The community composition of herbivores was significantly different between R? and R+ plants, although species diversity and evenness did not differ. 6. Rhizobia‐induced bottom‐up effects were transmitted to the third trophic level. The abundance, taxonomic richness, and diversity of the predators on R+ plants were greater but evenness was lower than those on R? plants. The community composition of predators was not affected by rhizobia. 7. These results indicate that the below‐ground microbes initiated bottom‐up effects on above‐ground herbivores and predators through trophic levels.  相似文献   

13.
Mean annual precipitation accounts for a large proportion of the variation in mean above‐ground net primary production (ANPP) of grasslands worldwide. However, the inter‐annual variation in production in any grassland site is only loosely correlated with precipitation. The longest record of variation in production and precipitation for a site corresponds to a shortgrass steppe in Colorado, USA. A previous study of this record showed that current‐year precipitation accounted for 39% of the inter‐annual variation in ANPP. In this note, we show that ca. one third of the unexplained variation is related to previous‐year ANPP: ANPP per mm of precipitation was higher in years preceded by wet, more productive years than in years preceded by average years; similarly, ANPP per mm of precipitation was lower in years preceded by dry, less productive years than in years preceded by average years. Since previous‐year ANPP was, in turn, associated with precipitation of a year before, current‐year ANPP was also explained by precipitation of two previous years. Our finding not only increases our predictive ability, but it also changes our understanding of how ANPP responds to fluctuations in precipitation. If ANPP is thought to vary according to current‐year precipitation only, it will simply track annual precipitation in time. According to this new result, however, ANPP fluctuations are buffered if wet, more productive years alternate with dry, less productive years, and they are amplified if wet or dry sequences of several years take place.  相似文献   

14.
Question: Pollution and eutrophication of surface water is increasingly a problem in agricultural landscapes. Do intact (relatively undisturbed) and degraded forests differ in seasonal nutrient storage and therefore potential to ameliorate nutrient pollution? Location: United States, Midwestern region. Methods: We used three sets of paired plots, where intact plots were located close to disturbed woodlands. Herbaceous perennials located in eight 0.25 m2 quadrats in the plots were harvested (in spring and mid‐summer), dried, separated into above‐ and below‐ground plant parts, and weighed to determine biomass. Nitrogen, phosphorus and potassium content of the plant tissues were then determined, and these data combined with biomass to estimate nutrient storage. Results: In spring, intact sites had 62% greater above‐ground biomass than disturbed sites and 75% greater below‐ground biomass. In summer, below‐ground biomass of intact plots was still much greater than that of disturbed plots (73 percent), but above‐ground biomass was similar. Nutrient tissue concentration generally did not differ, nor did soil nutrient levels. The disturbed sites were largely missing one group of species, the spring ephemerals, and this accounted for the difference in biomass and nutrient storage between sites. Conclusions: Relatively undisturbed woodlands in our study had a much greater capacity to store nutrients, and therefore ameliorate nutrient pollution, in early spring. This is significant because spring is also the time of highest potential leaching of nutrients into surface water.  相似文献   

15.
16.
Abstract The forage diggings of medium‐sized ground‐dwelling mammals (bandicoots and potoroos) were recorded over two seasons across 136 forested study sites, representing a stratified sample of the climatic, geological and topographic features of far south‐eastern mainland Australia. Diggings, presumably left by bandicoots, were recorded at a total of 42 sites, and those of potoroos at 27 sites. Statistical models were developed for the occurrence of these diggings, based on environmental attributes measured for each site. At a landscape scale, mean minimum temperature of the coldest month was an important explanatory variable for both groups of animals, with likelihood of their occurrence increasing with increasing temperature during that period. More locally, soil fertility and time since last fire also influenced the occurrence of bandicoot and potoroo diggings, while density of ground cover was additionally important in explaining the occurrence of bandicoot diggings. Bandicoot and potoroo diggings were more likely to occur with decreasing soil fertility and increasing time since fire, while occurrence of bandicoot diggings also increased with increasing density of ground cover. The possible management implications of our findings for conservation of medium‐sized ground‐dwelling mammals in multiple‐use forests are discussed.  相似文献   

17.
The targets of limiting global warming levels below 2°C or even 1.5°C set by Paris Agreement heavily rely on bioenergy with carbon capture and storage (BECCS), which can remove carbon dioxide in the atmosphere and achieve net zero greenhouse gas (GHG) emission. Biomass and coal co‐firing with CCS is one of BECCS technologies, as well as a pathway to achieve low carbon transformation and upgrading through retrofitting coal power plants. However, few studies have considered co‐firing ratio of biomass to coal based on each specific coal power plant's characteristic information such as location, installed capacity, resources allocation, and logistic transportation. Therefore, there is a need to understand whether it is worth retrofitting any individual coal power plant for the benefit of GHG emission reduction. It is also important to understand which power plant is suitable for retrofit and the associated co‐firing ratio. In order to fulfill this gap, this paper develops a framework to solve these questions, which mainly include three steps. First, biomass resources are assessed at 1 km spatial resolution with the help of the Geography Information Science method. Second, by setting biomass collection points and linear program model, resource allocation and supply chain for each power plants are complete. Third, is by assessing the life‐cycle emission for each power plant. In this study, Hubei Province in China is taken as the research area and study case. The main conclusions are as follows: (a) biomass co‐firing ratio for each CCS coal power plant to achieve carbon neutral is between 40% and 50%; (b) lower co‐firing ratio sometimes may obtain better carbon emission reduction benefits; (c) even the same installed capacity power plants should consider differentiated retrofit strategy according to their own characteristic. Based on the results and analysis above, retrofit suggestions for each power plant are made in the discussion.  相似文献   

18.
19.
Stand dynamics and the gap initiation prior to gap formation are not well‐understood because of its long‐term nature and the scarcity of late‐successional stands. Reconstruction of such disturbance is normally based on historical records and dendroecological methods. We investigated gap initiation and formation at the fine‐scale stand level in the old‐growth reserve of Karlshaugen in Norway. Given its long‐term conservation history, and thorough mapping in permanent marked plots with spatially referenced trees, it provides an opportunity to present stand development before, during, and after gap formation. Late‐successional decline in biomass was recorded after more than 50 years of close to steady state. Gaps in the canopy were mainly created by large old trees that had been killed by spruce bark beetles. Snapping by wind was the main reason for treefall. Long‐term dominance of Norway spruce excluded downy birch and Scots pine from the stand. Comparisons of the forest floor soil properties between the gap and nongap area showed significantly higher concentrations of plant available Ca within the gap area. Plant root simulator (PRS?) probes showed significantly higher supply rates for Ca and Mg, but significantly lower K for the gap compared to the nongap area. Soil water from the gap area had significantly higher C:N ratios compared to the nongap area. Fine‐scale variation with increasing distance to logs indicated that CWD is important for leaking of DOC and Ca. Our long‐term study from Karlshaugen documents gap dynamics after more than 50 years of steady state and a multiscale disturbance regime in an old‐growth forest. The observed disturbance dynamic caused higher aboveground and belowground heterogeneity in plots, coarse woody debris, and nutrients. Our study of the nutrient levels of the forest floor suggest that natural gaps of old‐growth forest provide a long‐lasting biogeochemical feedback system particularly with respect to Ca and probably also N. Norway spruce trees near the gap edge responded with high plasticity to reduced competition, showing the importance of the edge zone as hot spots for establishing heterogeneity, but also the potential for carbon sequestration in old‐growth forest.  相似文献   

20.
Question: What characteristics of local biotic neighbourhood is the best proxy of competitive effects experienced by plants in a herbaceous community: (1) total above‐ground biomass, (2) root mass or (3) relative above‐ground abundance of selected species? Location: Grassland at ca. 1100 m a.s.l. in the Krkono?e Mts., northern Czech Republic. Methods: We implanted two phytometer species, Antho‐xanthum alpinum and Festuca rubra, into a mountain grassland, and examined their response to local variation in (1) total above‐ground biomass, (2) root mass at three soil depths, and (3) relative abundance of individual species above‐ground. Results : Performance of both phytometer species was determined much more consistently by the mass of neighbouring roots and by species composition of neighbours than by the total above‐ground biomass. The two phytometer species showed different responses to these parameters. The most important relationships were (1) negative relationship between performance of Anthoxanthum and mass of neighbouring roots at 0–3 cm, (2) positive relationship between performance of Festuca and mass of neighbouring roots at 3–6 cm, and (3) negative relationship between performance of Festuca and relative abundance of Festuca in the neighbourhood. Conclusions: Neighbouring root mass and above‐ground species composition are better determinants of biotic interactions than total above‐ground biomass of neighbours in the studied mountain grassland. However, the relationships found are not necessarily due to variation in competitive intensity but can be due to other hidden factors as well, e.g. local availability of resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号