首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment.

Methodology/Principal Findings

In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1.

Conclusions/Significance

These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.  相似文献   

2.
Experiments conducted in Australia are described which show that there is an intermediate host involved in the life cycle of an Amblyospora sp. infecting the mosquito, Culex annulirostris. Microsporidian spores produced in the cyclopoid copepod, Mesocyclops albicans, are infectious to laboratory colony C. annulirostris larvae and produce developmental stages identical to those of natural Amblyospora infections in this mosquito. These larval infections result in uninucleate spores in progeny mosquitoes which, in turn, are infectious to M. albicans. Subsequent studies conducted with Amblyospora, copepods, and mosquitoes in the United States to replicate and reconfirm results obtained in Australia were successful. This is the first substantiated evidence of the involvement of intermediate hosts in the life cycles of microsporidia, and the discovery now provides us with information needed to evaluate these organisms as biological control agents for mosquitoes and other disease vectors.  相似文献   

3.
The microsporidium Unikaryon phyllotretae sp. n., a new pathogen of Phyllotreta undulata, is described based on light microscopic and ultrastructural characteristics. Microscopic examination of parasitized individuals revealed two types of spores. The majority of the spores were of the first type, which are oval and measured 2.74±0.17×1.93±0.17 μm when fresh. Fresh spores of the second type (very rare) are elongated and measured 4.39±0.18×1.61±0.20 μm. All life stages have single nuclei. Sporogony ends with uninucleate single sporoblasts and spores. The spores were only observed in Malpighian tubules. The isofilar polar filament of the parasite has six to eight coils, and a well-developed polaroplast was of the lamellated type, with closely packed anterior lamellae and loosely packed posterior lamellae.  相似文献   

4.
Human microsporidiosis, a serious disease of immunocompetent and immunosuppressed people, can be due to zoonotic and environmental transmission of microsporidian spores. A survey utilizing conventional and molecular techniques for examining feces from 570 free-ranging, captive, and livestock birds demonstrated that 21 animals shed microsporidian spores of species known to infect humans, including Encephalitozoon hellem (20 birds; 3.5%) and Encephalitozoon intestinalis (1 bird; 0.2%). Of 11 avian species that shed E. hellem and E. intestinalis, 8 were aquatic birds (i.e., common waterfowl). The prevalence of microsporidian infections in waterfowl (8.6%) was significantly higher than the prevalence of microsporidian infections in other birds (1.1%) (P < 0.03); waterfowl fecal droppings contained significantly more spores (mean, 3.6 × 105 spores/g) than nonaquatic bird droppings contained (mean, 4.4 × 104 spores/g) (P < 0.003); and the presence of microsporidian spores of species known to infect humans in fecal samples was statistically associated with the aquatic status of the avian host (P < 0.001). We demonstrated that a single visit of a waterfowl flock can introduce into the surface water approximately 9.1 × 108 microsporidian spores of species known to infect humans. Our findings demonstrate that waterborne microsporidian spores of species that infect people can originate from common waterfowl, which usually occur in large numbers and have unlimited access to surface waters, including waters used for production of drinking water.  相似文献   

5.
Mitochondria from dormant spores of the fungus Botryodiplodia theobromae did not contain extractable cyctochrome c oxidase (EC 1.9.3.1) activity; however, this enzyme activity was elaborated rapidly after 150 min of the 240-min germination sequence. The absence of cytochrome c oxidase activity in the dormant spores apparently is not an artifact caused by spore disruption and fractionation procedures, transient enzyme instability, or insensitivity of the enzyme assay. Mitochondria from dormant spores of three other phylogenetically diverse genera of fungi were observed to contain readily detectable quantities of cytochrome c oxidase, suggesting that the absence of the enzyme in B. theobromae may be relatively novel. The elaboration of cytochrome c oxidase activity in germinating spores was abolished by cycloheximide if the drug was added at or before 95 min of germination, but development of enzyme activity was initially insensitive to inhibitors of the mitochondrial genetic system, chloramphenicol or ethidium bromide. Incubation of spores in both ethionine and S-2-aminoethyl-l-cysteine reduced the amount of extracted cytochrome c oxidase activity. Elaboration of enzyme activity was severely retarded by cerulenin, an inhibitor of fatty acid biosynthesis and of spore germination. This enzyme activity developed in water-incubated or 1% Tween 80-incubated spores in which only the cytoplasmic ribosomes are functional in translation of a stored nuclear messenger RNA. The results of this study show that cytoplasmic (but not mitochondrial) ribosome function is required for development of this enzyme activity during spore germination, and they suggest that a portion of the cytochrome c oxidase enzyme or some other protein required for its activity is synthesized de novo upon germination.  相似文献   

6.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

7.
《Mycological Research》2007,111(2):137-153
The AM fungal family Archaeosporaceae and the genus Archaeospora are rendered paraphyletic by the relationship with the Geosiphonaceae. This problem led to a more detailed study of the Archaeosporales. Members of the Archaeosporaceae were described as forming both glomoid and acaulosporoid spores, or solely acaulosporoid spores. However, we found that Glomus callosum fell into the same phylogenetic clade as A. leptoticha and A. gerdemannii, but exclusively formed glomoid spores. To resolve these inconsistencies, a genus, Ambispora gen. nov., typified by Ambispora fennica sp. nov., is erected based on morphological evidence and SSU and ITS region rDNA data. Ambispora contains three species known to produce both acaulosporoid and glomoid spores: A. fennica, A. leptoticha comb. nov. (basionym G. leptotichum), and A. gerdemannii comb. nov. (basionym G. gerdemannii). Another species, A. callosa comb. nov. (basionym G. callosum), is known only from glomoid spores. Ambispora is placed in a new family, the Ambisporaceae fam. nov. The Archaeosporaceae is maintained with the type species, Archaeospora trappei (basionym Acaulospora trappei), along with Intraspora schenckii (basionym Entrophospora schenckii). Acaulospora nicolsonii, known only from acaulosporoid spores, is discussed and is considered likely to belong in the Ambisporaceae, but is retained within its present genus because of inadequate morphological information and a lack of molecular data.  相似文献   

8.
Isolates of Pasteuria penetrans were evaluated for ecological characteristics that are important in determining their potential as biological control agents. Isolate P-20 survived without loss of its ability to attach to its host nematode in dry, moist, and wet soil and in soil wetted and dried repeatedly for 6 weeks. Some spores moved 6.4 cm (the maximum distance tested) downward in soil within 3 days with percolating water. The isolates varied greatly in their attachment to different nematode species and genera. Of five isolates tested in spore-infested soil, three (P-104, P-122, B-3) attached to two or more nematode species, whereas B-8 attached only to Meloidogyne hapla and B-I did not attach to any of the nematodes tested. In water suspensions, spores of isolate P-20 attached readily to M. arenaria but only a few spores attached to other Meloidogyne spp. Isolate P-104 attached to all Meloidogyne spp. tested but not to Pratylenchus scribneri. Isolate B-4 attached to all species of Meloidogyne and Pratylenchus tested, but the rate of attachment was relatively low. Isolate P-Z00 attached in high numbers to M. arenaria when spores were extracted from females of this nematode; when extracted from M. javanica females, fewer spores attached to M. arenaria than to M. javanica or M. incognita.  相似文献   

9.
A method based on the tyndallization procedure is described for isolation of Bacillus popilliae var. rhopaea spores from the soil. A soil suspension is diluted with a germinating medium, which promotes the germination of most spores except B. popilliae var. rhopaea, and is treated with a series of seven heat shocks (70°C for 20 min) at hourly intervals. This treatment reduced the number of contaminant spores by over 95%. The suspension is then plated out onto “J” medium which allows the germination and growth of all surviving spores including the milky disease spores. The plates are incubated anaerobically at 28°C for 7 days before the characteristic small transparent colonies of B. popilliae var. rhopaea are counted. In testing the method it was revealed that about 15% of the milky disease spores in the soil produced visible colonies, and that a spore concentration of over 1.2 × 105 spores/g dry wt of soil could be quantified. This concentration of spores produces only 3% infection in Rhopaea verreauxi larvae. The method may be applicable to other varieties of B. popilliae which will grow on “J” medium.  相似文献   

10.
The susceptibility of Oryctes rhinoceros adults to infections due to entomopathogenic fungi (Beauveria bassiana, Beauveria tenella, Metarrhizium anisopliae, Paecilomyces fumoso-roseus, and Spicaria rileyi) was studied by spraying titrated spores suspensions on the insect integument. The results show a definite susceptibility of the adults to Metarrhizium anisopliae strains of the major type only.  相似文献   

11.
A total of 7386 samples of adult honey bees from different areas of Serbia (fifteen regions and 79 municipalities) were selected for light microscopy analysis for Nosema species during 1992–2017. A selection of honey bee samples from colonies positive for microsporidian spores during 2009–2011, 2015 and 2017 were then subjected to molecular diagnosis by multiplex PCR using specific primers for a region of the 16S rRNA gene of Nosema species. The prevalence of microsporidian spore-positive bee colonies ranged between 14.4% in 2013 and 65.4% in 1992. PCR results show that Nosema ceranae is not the only Nosema species to infect honey bees in Serbia. Mixed N. apis/N. ceranae infections were detected in the two honey bee samples examined by mPCR during 2017. The beekeeping management of disease prevention, such as replacement of combs and queens and hygienic handling of colonies are useful in the prevention of Nosema infection.  相似文献   

12.
Burenella dimorpha infects the tropical fire ant, Solenopsis geminata, producing two morphologically distinct types of spores. A binucleate, nonpansporoblast membrane-bounded (NPMB) spore develops in and destroys the hypodermis, rupturing the cuticle in the pupal stage. A uninucleate, pansporoblast membrane-bounded (PMB) spore develops in the fat body. Adult ants cannibalize ruptured pupae but do not ingest spores. Instead, the spores and particulate foods are diverted to the infrabuccal cavity, formed into an infrabuccal pellet, and fed to fourth-instar larvae only. This larval instar is the only stage in the life cycle of S. geminata that is vulnerable to infection. NPMB spores are infective, but PMB spores do not extrude their polar filaments in the larval gut and are expelled in the meconium upon pupation.  相似文献   

13.
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.  相似文献   

14.
There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4–24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.  相似文献   

15.
A new species of Haplosporidium Caullery & Mesnil, 1899 parasitising the pulmonate gastropod Siphonaria lessonii Blainville in Patagonia, Argentina, is described based on morphological (scanning and transmission electron microscopy) and sequence (small subunit ribosomal RNA gene) data. Different stages of sporulation were observed as infections disseminated in the digestive gland. Haplosporidium patagon n. sp. is characterised by oval or slightly subquadrate spores with an operculum that is ornamented with numerous short digitiform projections of regular height, perpendicular to and covering its outer surface. The operculum diameter is slightly larger than the apical diameter of the spore. Neither the immature nor mature spores showed any kind of projections of the exosporoplasm or of the spore wall. Regarding phylogenetic affinities, the new species was recovered as sister to an undescribed species of Haplosporidium Caullery & Mesnil, 1899 from the polychaete family Syllidae Grube from Japanese waters. The morphological characters (ornamentation of the operculum, spore wall structure, shape and size of spores, and the lack of spore wall projections) corroborate it as an as yet undescribed species of Haplosporidium and the first for the phylum in marine gastropods of South America. Siphonaria lessonii is the only known host to date.  相似文献   

16.
Two new species of Microsporida belonging to the genus Microsporidium are described. Microsporidium goeldichironomi n. sp. parasitizes the fat body of Goeldichironomus holoprasinus and Microsporidium chironomi n. sp. infects Chironomus attenuatus. Both microsporidia form uninucleate spores from rosette-shaped sporonts. M. goeldichironomi sporonts form 4, 6, 8, 10, 12, 16, and possibly more spores. Two shapes of spores are produced, oval, or slightly pyriform spores measuring 3.70 ± 0.09 × 2.49 ± 0.13 μm and pyriform spores measuring 3.74 ± 0.44 × 2.04 ± 0.17 μm. Electron micrographs show that both types of spores are uninucleate, have 8 to 11 polar filament coils and a lamellate polaroplast showing several distinct regions. M. chironomi spores are pyriform and are often joined at the posterior end in groups of two or four. They measure 4.12 ± 0.37 × 2.45 ± 0.26 μm. The spores are uninucleate, have six to seven polar filament coils and a lamellate polaroplast showing two distinct regions. Neither species can be transmitted per os and thus are assumed to be transovarially transmitted. No pansporoblastic membrane is present in either species.  相似文献   

17.
A newly discovered microsporidium infecting the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae), provisionally placed in the genus Canningia, was studied to determine its impact on O. sulcatus. O. sulcatus populations from several locations were sampled and evaluated for microsporidiosis. A very low prevalence of the disease was observed in all locations surveyed (<3.0%). Laboratory studies were conducted by orally exposing both larvae and adults of O. sulcatus to varying concentrations of Canningia sp. spores. Larval bioassays at a variety of dosages (0, 10, etc.) were performed to evaluate pathogen infectivity, larval survival and growth. Adult bioassays (dosages: 0, 10, etc.) were performed to evaluate longevity, fecundity and mechanisms of vertical pathogen transmission. Larvae and adults were infected in all spore treatments. Larval growth was significantly reduced at dosages above 10 spores/larva. Adults infected at all dosages experienced high levels of mortality and fecundity was reduced to zero. Greenhouse trials were performed to determine if larvae feeding in soil acquired infections when spores were topically applied as a drench application (0, 105, 106, 107 spores/pot). Established larvae feeding on plant roots in pots developed infections when exposed to drench treatments of 106 and 107 spores/pot after 14-21 days. Canningia sp. is an acute pathogen of O. sulcatus infective to both larvae and adults. Topically applied spores also infected larvae feeding on roots in soilless potting media, suggesting the possibility of using this pathogen in a microbial control program.  相似文献   

18.

Background

Opportunistically nosocomial infections in hospitalized patients are often related to Clostridium difficile infections (CDI) due to disruption of the intestinal micro-flora by antibiotic therapies during hospitalization. Clostridial exotoxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) in the host intestine, disrupt the intestinal barrier leading to acute inflammation and diarrhea. The C-terminal receptor binding domain of TcdA (A-rRBD) has been shown to elicit antibody responses that neutralize TcdA toxicity in Vero cell cytotoxicity assays, but not effectively protect hamsters against a lethal dose challenge of C. difficile spores. To develop an effective recombinant subunit vaccine against CDI, A-rRBD was lipidated (rlipoA-RBD) as a rational design to contain an intrinsic adjuvant, a toll-like receptor 2 agonist and expressed in Escherichia coli.

Results

The purified rlipoA-RBD was characterized immunologically and found to have the following properties: (a) mice, hamsters and rabbits vaccinated with 3 μg of rlipoA-RBD produced strong antibody responses that neutralized TcdA toxicity in Vero cell cytotoxicity assays; furthermore, the neutralization titer was comparable to those obtained from antisera immunized either with 10 μg of TcdA toxoid or 30 μg of A-rRBD; (b) rlipoA-RBD elicited immune responses and protected mice from TcdA challenge, but offered insignificant protection (10 to 20 %) against C. difficile spores challenge in hamster models; (c) only rlipoA-RBD formulated with B-rRBD consistently confers protection (90 to 100 %) in the hamster challenge model; and (d) rlipoA-RBD was found to be 10-fold more potent than A-rRBD as an adjuvant to enhancing immune responses against a poor antigen such as ovalbumin.

Conclusion

These results indicate that rlipoA-RBD formulated with B-rRBD could be an excellent vaccine candidate for preclinical studies and future clinical trials.  相似文献   

19.
Twenty-five adult female Plodia interpunctella infected with Nosema plodiae laid 856 eggs in laboratory tests; 12.5% of the eggs were infected transovarially. The highest level of transmission by an individual female was 14 infected eggs of 27 laid (51.8%); the lowest level of transmission observed was 1 of 43 eggs (2.3%). All stages of N. plodiae were not transmitted with equal frequency; moreover, most eggs harbored predominently only the trophozoite stage of the pathogen. Approximately 80% of the infected eggs contained trophozoites almost exclusively; about 13.1% contained about an equal number of spores and trophozoites, and about 6.5% contained mainly spores. Histological observations indicated that infections may be initiated in nurse cells and subsequently transferred to associated oocytes.  相似文献   

20.
In a study of microbial control of grasshoppers, Nosema locustae was applied to 10-acre plots in 2 replications of 24 treatment combinations in which the factors were (1) times of applications: 4 applications spaced over 22 days; (2) concentrations of spores: 1, 30, and 900 spores/in2; and (3) levels of the spore carrier: 1 and 4 lb wheat bran/acre. The concentrations of spores had the most effect in reducing the densities of grasshoppers and the incidence of infection among the survivors at the last sampling (coincided with the initiation of oviposition), the average reduction in density attributed to application of 1 spore/in2 was 21%, that attributed to 30 spores/in2 was 46%, and that attributed to 900 spores/in2 was 73%. The first and second applications caused the greatest reductions in density; the second, third, and fourth applications produced the highest incidence of infections. Also, a higher incidence of infection was observed among grasshoppers from plots treated with 30 spores/in2 on 1 lb bran/acre than from plots treated with 30 spores/in2 on 4 lb of bran/acre. Therefore, a ratio of about 0.63–0.94 billion spores/lb bran applied at a rate of 1–1.5 lb/acre (= 100–150 spores/in2) at the time when the principal early summer species are third-instar nymphs would have resulted in overall reductions in density of 50–60%, with 35–50% of the survivors sufficiently infected so that fecundity would probably be affected. The reductions and incidence of infections would be higher in species that readily accept and use wheat bran, among which are some of the more economically important species of grasshoppers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号