首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cabbage looper hemolymph induced rapid germination and outgrowth of spores of Bacillus popilliae. Spores germinated within sporangia but outgrowth occurred from free released spores as well as from spores retained in sporangia. With 37°C, an alkaline pH, and tyrosinase, outgrowth resulted in 1 hr. Of six strains of milky disease bacteria tested, hemolymph mediated germination and outgrowth of only those which are infective perorally for European chafer larvae, indicating a potential use as a screening tool to assess virulence for the chafer.  相似文献   

2.
A chemically defined medium which allowed germination, outgrowth, and subsequent resporulation of Bacillus cereus T spores, without intervening cell division (microcycle sporogenesis), is described. No medium replacement was required. The second-stage spores were heat-stable and had similar germination characteristics and dipicolinic acid content to primary spores. Deoxyribonucleic acid (DNA) replication began soon after germination and there was a doubling in the DNA content of the cells within 2 hr.  相似文献   

3.
The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.  相似文献   

4.
Susceptibility to UV irradiation of B. cereus BIS-59 spores undergoing germination at various stages-dormant spores to vegetative cell stage and their ability to recover from radiation damage were studied. For a given dose of radiation, the number of spore photoproducts (SPP) formed in the DNA of dormant spores was about 5-times greater than that of thymine dimers (TT) formed in the DNA of vegetative cells. At intermediate stages of the germination cycle, there was a rapid decline in the UV radiation-induced SPP formed in DNA with a concomitant increase in the UV radiation-induced TT formed in DNA. Bacterial spores undergoing germination (up to 3 hr) in the low nutrient medium (0.3% yeast extract) displayed much higher resistance to UV radiation than those germinating in the rich nutrient medium, even though there was no discernible difference under the two incubation conditions in respect of the extent of germination and the time at which the outgrowth stage appeared (3 hr). This was due to the formation TT in the DNA of spores germinating in the low nutrient as compared to that of spores germinating in the rich-nutrient medium. In UV-irradiated dormant spores, SPP formed in the spore DNA did not disappear even after prolonged incubation in the non-germinating medium. However, when the UV-irradiated dormant spores were germinated in low or rich nutrient medium, a significant proportion of SPP in DNA was eliminated. The dormant spores incubated in either of the germinating media for 15 min and then UV-irradiated were capable of eliminating SPP (presumably by monomerization) even by incubation in a non-germinating medium and in the complete absence of protein synthesis (buffer holding recovery), thereby implying that spore-repair enzymes were activated in response to initial's germination. The acquisition of photo-reactivation ability appeared in spores subjected to germination only in the rich-nutrient medium at the outgrowth stage and required de novo synthesis of the required enzymes.  相似文献   

5.
Germination of Microsporum gypseum macroconidia was accompanied by the release of alkaline protease, calcium ions, and inorganic phosphate into the germination fluid. The rate of germination was greatest during the first 2 hr, decreasing thereafter. This decrease in rate was accompanied by a decrease in protease activity, which was caused by an interaction of the enzyme with the inorganic phosphate released from the spores and accumulated in the germination medium after 2 hr. Germination of high spore densities was regulated by the ratio of released phosphate to protease protein, resulting in a constant percentage of germination at both high and low spore densities. A germination-defective mutant strain failed to germinate normally and released excessively high concentrations of phosphate into the germination medium during the initial 2 hr of incubation. Addition of calcium ions to germination mutant macroconidia stabilized spore morphology, prevented protease inactivation, and allowed normal germ-tube outgrowth. The germination of macroconidia appears to be regulated by the release of phosphate ions, which then inhibit the alkaline protease.  相似文献   

6.
Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores'' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore''s genome is free of damage.  相似文献   

7.
Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program “SporeTracker” allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less) and fewer grew out (48.4% less) after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased) and the distribution and average of the duration of germination itself (increased). However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.  相似文献   

8.
Germination and outgrowth are critical steps for returning Bacillus subtilis spores to life. However, oxidative stress due to full hydration of the spore core during germination and activation of metabolism in spore outgrowth may generate oxidative DNA damage that in many species is processed by apurinic/apyrimidinic (AP) endonucleases. B. subtilis spores possess two AP endonucleases, Nfo and ExoA; the outgrowth of spores lacking both of these enzymes was slowed, and the spores had an elevated mutation frequency, suggesting that these enzymes repair DNA lesions induced by oxidative stress during spore germination and outgrowth. Addition of H2O2 also slowed the outgrowth of nfo exoA spores and increased the mutation frequency, and nfo and exoA mutations slowed the outgrowth of spores deficient in either RecA, nucleotide excision repair (NER), or the DNA-protective α/β-type small acid-soluble spore proteins (SASP). These results suggest that α/β-type SASP protect DNA of germinating spores against damage that can be repaired by Nfo and ExoA, which is generated either spontaneously or promoted by addition of H2O2. The contribution of RecA and Nfo/ExoA was similar to but greater than that of NER in repair of DNA damage generated during spore germination and outgrowth. However, nfo and exoA mutations increased the spontaneous mutation frequencies of outgrown spores lacking uvrA or recA to about the same extent, suggesting that DNA lesions generated during spore germination and outgrowth are processed by Nfo/ExoA in combination with NER and/or RecA. These results suggest that Nfo/ExoA, RecA, the NER system, and α/β-type SASP all contribute to the repair of and/or protection against oxidative damage of DNA in germinating and outgrowing spores.  相似文献   

9.
10.

Background

Germination is the irreversible loss of spore-specific properties prior to outgrowth. Because germinating spores become more susceptible to killing by stressors, induction of germination has been proposed as a spore control strategy. However, this strategy is limited by superdormant spores that remain unaffected by germinants. Harsh chemicals and heat activation are effective for stimulating germination of superdormant spores but are impractical for use in a hospital setting, where Clostridium difficile spores present a challenge. Here, we tested whether osmotic activation solutes will provide a mild alternative for stimulation of superdormant C. difficile spores in the presence of germinants as previously demonstrated in several species of Bacillus. In addition, we tested the hypothesis that the limitations of superdormancy can be circumvented with a combined approach using nisin, a FDA-approved safe bacteriocin, to inhibit outgrowth of germinated spores and osmotic activation solutes to enhance outgrowth inhibition by stimulating superdormant spores.

Principal Findings

Exposure to germination solution triggered ∼1 log10 colony forming units (CFU) of spores to germinate, and heat activation increased the spores that germinated to >2.5 log10CFU. Germinating spores, in contrast to dormant spores, became susceptible to inhibition by nisin. The presence of osmotic activation solutes did not stimulate germination of superdormant C. difficile spores exposed to germination solution. But, in the absence of germination solution, osmotic activation solutes enhanced nisin inhibition of superdormant spores to >3.5 log10CFU. The synergistic effects of osmotic activation solutes and nisin were associated with loss of membrane integrity.

Conclusions

These findings suggest that the synergistic effects of osmotic activation and nisin bypass the limitations of germination as a spore control strategy, and might be a novel method to safely and effectively reduce the burden of C.difficile spores on skin and environmental surfaces.  相似文献   

11.
Spores of the Langeland strain of Clostridium botulinum type F were grown at 30 or 10 C after exposure to 0.0, 0.1, or 0.2 megarad of cesium-137 gamma irradiation. When incubated at 30 C, cultures irradiated at the 0.2-megarad level reached the stationary growth phase 15 hr earlier than the 0.0 or 0.1 megarad-irradiated cultures. This was not the result of earlier or more frequent germination of the irradiated spores, the formation of larger individual cells, filament formation, or cell clumping. It appeared to result from elimination of a lytic phenomenon noted in 0.0 and 0.1 megarad-irradiated cultures after 26 and 29 hr of incubation, respectively, which was followed by a second exponential-growth response 5 hr later in these cultures. The time of toxin appearance in culture supernatant fractions was independent of prior irradiation treatment and occurred after 36 hr of incubation. Toxin release was essentially logarithmic until maximal titers were reached and maximal toxin titers were higher in irradiated than in unirradiated cultures. The higher toxin level was sustained over a period of 23 days of 30 C. Toxin produced in the 30 C cultures could not be trypsin-activated. An incubation temperature of 10 C resulted in no outgrowth of spores subjected to 0.2 megarad of irradiation, although spore germination did occur. At 10 C, outgrowth of the 0.1-megarad culture was faster with slightly higher quantities of a more stable toxin than was seen in the unirradiated control. At 10 C, trypsinization was necessary to demonstrate the toxin present in the cultures.  相似文献   

12.
Senior A  Moir A 《Journal of bacteriology》2008,190(18):6148-6152
The GerT protein of Bacillus cereus shares 74% amino acid identity with its homolog GerN. The latter is a Na+/H+-K+ antiporter that is required for normal spore germination in inosine. The germination properties of single and double mutants of B. cereus ATCC 10876 reveal that unlike GerN, which is required for all germination responses that involve the GerI germinant receptor, the GerT protein does not have a significant role in germination, although it is required for the residual GerI-mediated inosine germination response of a gerN mutant. In contrast, GerT has a significant role in outgrowth; gerT mutant spores do not outgrow efficiently under alkaline conditions and outgrow more slowly than the wild type in the presence of high NaCl concentrations. The GerT protein in B. cereus therefore contributes to the success of spore outgrowth from the germinated state during alkaline or Na+ stress.  相似文献   

13.
Pretreatment with ethidium bromide (5 μg/ml) followed by a water wash had no effect on unheated Bacillus subtilis spores, but the viability of these spores after heating was much lower than that of similarly heated spores exposed to water alone. The fate of water- or ethidium bromide-treated spores, unheated or heated, was followed by allowing them to germinate and outgrow in a minimal or a complex liquid medium. Spores exposed to ethidium bromide and then heated (85°C, 10 min) exhibited a developmental block during germination and outgrowth. Many of them were blocked at the stage when the bacterium emerged from the germinated spore. When 0.35 μg of ethidium bromide per ml was added to heated spores in the germination-growth medium, the outgrowth of heated spores was inhibited to the same extent as were pretreated spores. Ethidium bromide acted in the first hour of germination of heated spores since addition after this time was ineffective in inhibiting recovery events. Repair of heat-damaged spore DNA was detected during the first 2 h of germination. The addition of ethidium bromide (final concentration, 0.35 μg/ml) inhibited DNA repair during early outgrowth. Increased sensitivity of spores to heat after pretreatment with sublethal concentrations of ethidium bromide was due to the inhibition of the repair of heat-damaged DNA.  相似文献   

14.
The use of anthrax spores as a bioweapon has spurred efforts aimed at identifying key proteins expressed in Bacillus anthracis. Because spore germination and outgrowth occur prior to and are required for disease manifestations, blocking germination and early outgrowth with novel vaccines or inhibitors targeting critical B. anthracis germination and outgrowth-associated factors is a promising strategy in mitigating bioterror. By screening 587 paired protein spots that were isolated from dormant and germinating anthrax spores, respectively, we identified 10 spore proteins with statistically significant germination-associated increases and decreases. It is likely that proteins whose levels change during germination may play key roles in the germination and outgrowth processes, and they should be listed as priority targets for development of prophylactic and therapeutic agents against anthrax. The 31 new proteins identified in this study also complement an emerging proteomic database of B. anthracis.  相似文献   

15.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

16.
The method by which sodium nitrite may act to prevent germination or outgrowth, or both, of heat-injured spores in canned cured meats was investigated by using Clostridium perfringens spores. Four possible mechanisms were tested: (i) prevention of germination of the heat-injured spores, (ii) prior combination with a component in a complex medium to prevent germination of heat-injured spores, (iii) inhibition of outgrowth of heat-injured spores, and (iv) induction of germination (which would render the spore susceptible to thermal inactivation). Only the third mechanism was effective with the entire spore population when levels of sodium nitrite commercially acceptable in canned cured meats were used. Concentrations of 0.02 and 0.01% prevented outgrowth of heat-sensitive and heat-resistant spores, respectively. Nitrite-induced germination occurred with higher sodium nitrite concentrations.  相似文献   

17.
Sodium nitrite alone has been shown to stimulate germination of PA 3679h spores. The process was accelerated by using increased concentrations of sodium nitrite, a low pH, and a high temperature of incubation. At low concentrations of nitrite (0.01 to 0.2%), the delay of 36 to 48 hr occurred before germination commenced at 37 C. However, with 3.45% nitrite at 45 C and pH 6.0, most of the spores germinated within 1 hr. At pH 7.0, the germination rate decreased markedly, and at pH 8.0 it was nil. The greatest acceleration in germination rate occurred near 60 C. Hydroxylamine was completely inhibitory to nitrite-induced germination. Sodium nitrite, in turn, inhibited germination by l-alanine, the degree of inhibition being influenced by nitrite concentration and pH.  相似文献   

18.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

19.
RNA was extracted from dormant and germinating Bacillus subtilis 168 spores (intact spores and chemically decoated spores) by using rapid rupture followed by acid–phenol extraction. Spore germination progress was monitored by assaying colony forming ability before and after heat shock and by reading the optical density at 600 nm. The purity, yield, and composition of the extracted RNA were determined spectrophotometrically from the ratio of absorption at 260 nm to that at 280 nm; in a 2100 BioAnalyzer, giving the RNA yield/108 spores or cells and the distribution pattern of rRNA components. The method reported here for the extraction of RNA from dormant spores, as well as during different phases of germination and outgrowth, has proven to be fast, efficient and simple to handle. RNA of a high purity was obtained from dormant spores and during all phases of germination and growth. There was a significant increase in RNA yield during the transition from dormant spores to germination and subsequent outgrowth. Chemically decoated spores were retarded in germination and outgrowth compared with intact spores, and less RNA was extracted; however, the differences were not significant. This method for RNA isolation of dormant, germinating, and outgrowing bacterial endospores is a valuable prerequisite for gene expression studies, especially in studies on the responses of spores to hostile environmental conditions.  相似文献   

20.
The Schaeffer-Fulton endospore stain was modified so that it would stain Bacillus subtilis endospores in soil smears. The modified stain differentiated among dormant spores, spores undergoing activation, and spores which had germinated but had not yet shown outgrowth. These differentiations were seen for spores in soil and for pure spore preparations in the laboratory. This stain was used to show reversible B. subtilis spore activation promoted by an Ensifer adhaerens-like indigenous bacterium in soil and by pure cultures of E. adhaerens added to spores in the laboratory. Under the specific conditions in the laboratory, spore germination did not proceed beyond the activation stage, and relatively little change occurred in the numbers of both E. adhaerens and B. subtilis. This was also true in soil, although some germination with destruction of spores and vegetative cells did occur if the soil had been nutritionally enriched by preincubation with incorporated ground alfalfa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号