首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the phylogeographic patterns of Merodon species (Diptera, Syrphidae) in the Eastern Mediterranean. Ten species were sampled on five different islands and mainland sites as a minimum. All samples were screened for their mtDNA COI barcode haplotype diversity, and for some samples, we additionally generated genomic fingerprints. The recently established zoogeographic distribution categories classify these species as having (1) Balkan distribution; (2) Anatolian distribution; (3) continental areas and large islands distribution; and (4) with wide distribution. The ancestral haplotypes and their geographical localities were estimated with statistical parsimony (TCS). TCS networks identified as the ancestral haplotype samples that originated from localities situated within the distributional category of the species in question. Strong geographical haplotype structuring was detected for many Merodon species. We were particularly interested to test the relative importance of current (Aegean Sea) and past Mid‐Aegean Trench) barriers to dispersal for Merodon flies in the Aegean. We employed phylogenetic β‐diversity (Pβtotal) and its partition in replacement (Pβrepl) and richness difference (Pβrich) to test the importance of each explanatory variable (interisland distance, MAT, and island area) in interisland differences using partial Mantel tests and hierarchical partitioning of variation. β‐Analyses confirmed the importance of both current and past barriers to dispersal on the evolution of group. Current interisland distance was particularly important to explain the replacement of haplotypes, while the MAT was driving differences in richness of haplotypes, revealing the MAT as a strong past barrier whose effects are still visible today in the phylogenetic history of the clade in the Aegean. These results support the hypothesis of a highly restricted dispersal and gene flow among Merodon populations between islands since late Pleistocene. Additionally, patterns of phylogeographic structure deduced from haplotype connections and ISSR genome fingerprinting data revealed a few putative cases of human‐mediated transfers of Merodon spp.  相似文献   

2.
Mitochondrial DNA sequences from 16S rRNA and ATPase8 genes were used to investigate phylogeographic patterns of the land snail Albinaria (Gastropoda: Clausiliidae) in the Aegean archipelago. Forty-two populations of Albinaria were analyzed, mainly A. turrita, A. caerulea and A. brevicollis, collected from 22 Aegean islands and certain surrounding regions. Maximum parsimony, maximum likelihood and Bayesian analyses on 16S rRNA and combined datasets produced trees that share significant similarity and reveal a phylogeny with distinct branches which are in general, but not full, agreement with current taxonomy. The Aegean taxa are not monophyletic as a whole, since A. turrita does not cluster with A. caerulea and A. brevicollis. The latter form a distinct monophyletic cluster, within which two groups are evident. These groups do not readily correspond to currently accepted morphospecies; one contains the populations that inhabit the central part of the archipelago plus some eastern islands, while the other contains populations whose geographic distribution is restricted to the southeastern part of the archipelago. The divergence between these two groups is attributed to vicariance events that primarily shape contemporary distributions. Although dispersal may also be present, certain small- and large-scale vicariance events can be traced; alternative phylogeographic hypotheses are discussed in view of the historical biogeography of the region.  相似文献   

3.
Quaternary environmental changes substantially impacted the landscape and promoted rapid evolutionary changes in many species; however, analyses of adaptive phenotypic variation in plants have usually neglected the underlying historical context. Here, we associate phylogeography and phenotypic evolution by analysing the divergence of Calceolaria polyrhiza multivariate floral phenotype after a Pleistocene post‐glacial expansion in Patagonia. Phenotypic matrix ( P ) properties (size, shape, orientation and phenotypic integration) of six refugium and six recent populations from two different phylogroups were compared following different approaches. We found that P ‐matrix shape and orientation remained stable despite the strong phylogeographic footprint of post‐glacial expansion. However, average proportional reductions in matrix size supported the expectation that drift had a significant effect on the floral phenotype in the northern phylogroup. When phylogeographic history was not included in the analyses, the results overestimated phenotypic differences, whereas under explicit phylogeographic control, drift appeared as the best explanation for matrix differences. In general, recent populations showed a larger phenotypic divergence among them, but a lower overall phenotypic variation than refugium populations. Random Skewers analyses indicated a lower potential response to selection in recently colonized populations than in refugium populations. We discuss that the combination of phylogeographic analyses with geographical distribution of functional phenotypic (genotypic) variation is critical not only to understand how historical effects influence adaptive evolution, but also to improve field comparisons in evolutionary ecology studies.  相似文献   

4.
The Greek endemic isopod species Trachelipus aegaeus is distributed in Aegean islands and the adjacent coastal parts of the Greek mainland. Major palaeogeographic events of the Aegean archipelago, such as the formation of the mid‐Aegean trench and the Messinian Salinity Crisis, have been often employed as major causal factors of evolutionary events and phylogeographic patterns exhibited by several taxa. Herein, we infer phylogenetic relationships among T. aegaeus populations using partial cytochrome oxidase subunit I (COI) and 16S rRNA sequences. Due to the poor preservation of the specimens, we propose a modified DNA extraction protocol, which returned highly positive results in terms of the quality of the total extracted DNA. We implement a calibrated molecular clock and path sampling analysis, using alternative palaeogeographic events and rates of substitution, to evaluate the biogeographic history of the species and to estimate the chronology of diversification events among its populations. Our results are clearly in favour of the scenario of the MAT triggering vicariance among most T. aegaus populations. Moreover, the large intraspecific genetic divergence (0–19% for COI and 0–20.3% for the 16S rRNA) and the overall phylogeographic patterns depicted herein seem not to have been obscured by more recent palaeogeological events. A role of dispersal, probably human‐aided, is assumed for certain ‘deviant’ cases.  相似文献   

5.
Aim We analysed phylogeographic patterns and ecological niche models (ENMs) of the widespread velvet ant (Hymenoptera: Mutillidae) Sphaeorpthalma difficilis to understand the history of diversification in the Nearctic deserts and to identify areas that may have been cold‐desert refugia during the Pleistocene. These areas should be targeted for conservation because of their climatic stability throughout historical climate change events. Location North American arid regions. Methods The two internal transcribed spacer regions (ITS1 and ITS2) were sequenced and analysed using Bayesian techniques to uncover phylogeographic patterns of relatedness among S. difficilis populations. History of diversification was estimated using parsimony‐based and maximum likelihood character reconstructions. Molecular dating analyses were implemented in the program r8s and were calibrated with Dominican amber fossils. ENMs were developed based on current climate data and projected onto Pleistocene climate surfaces. Results The analyses suggest that S. difficilis had a complex history of Pleistocene range expansion and contraction that led to the formation of genetically distinct populations inhabiting distinct arid regions. ENMs and phylogeographic patterns indicate that several cold‐desert refugia existed in North America, particularly in the Colorado Plateau and parts of the Great Basin Desert. Main conclusions Analyses of S. difficilis are used to identify potential Pleistocene refugia in the North American cold deserts. Because these areas represent climatically stable locations, they are critical for the long‐term persistence of biodiversity. This research provides evidence that in addition to desert‐like conditions persisting through the ice age in parts of the Nearctic warm deserts, many areas maintained desert‐like characteristics in the regional cold deserts. Further work is needed to elucidate options for preserving biodiversity in these cold‐desert refugia.  相似文献   

6.
Multilocus phylogeography can uncover taxonomically unrecognized lineage diversity across complex biomes. The Australian monsoonal tropics include vast, ecologically intact savanna‐woodland plains interspersed with ancient sandstone uplands. Although recognized in general for its high species richness and endemism, the biodiversity of the region remains underexplored due to its remoteness. This is despite a high rate of ongoing species discovery, especially in wetter regions and for rock‐restricted taxa. To provide a baseline for ongoing comparative analyses, we tested for phylogeographic structure in an ecologically generalized and widespread taxon, the gecko Heteronotia binoei. We apply coalescent analyses to multilocus sequence data (mitochondrial DNA and eight nuclear DNA introns) from individuals sampled extensively and at fine scale across the region. The results demonstrate surprisingly deep and geographically nested lineage diversity. Several intra‐specific clades previously shown to be endemic to the region were themselves found to contain multiple, short‐range lineages. To infer landscapes with concentrations of unique phylogeographic diversity, we probabilistically estimate the ranges of lineages from point data and then, combining these estimates with the nDNA species tree, estimate phyloendemism across the region. Highest levels of phyloendemism occur in northern Top End, especially on islands, across the topographically complex Arnhem escarpment, and across the sandstone ranges of the western Gulf region. These results drive home that deep phylogeographic structure is prevalent in tropical low‐dispersal taxa, even ones that are ubiquitous across geography and habitats.  相似文献   

7.
Phylogeographic analyses using mitochondrial DNA (mtDNA) have revealed many examples of apparently deep historical subdivisions ('phylogroups') within many vertebrates. It remains unclear whether these phylogroups represent independently evolving, adaptively differentiated lineages or groups that show little functional differentiation and, hence, will merge on contact. Here, we use mtDNA sequence data to evaluate the phylogeographic relationships between two of the northernmost populations of black ratsnakes (Pantherophis obsoletus complex) in Ontario, Canada and previously analysed populations in the United States. We then use population-level analyses to evaluate the level of adaptive divergence between previously established mtDNA phylogroups. Phylogenetic analyses show that southern Ontario snakes have mtDNA haplotypes that fall within the Central mtDNA phylogroup, as designated by Burbrink et al. (2000). In contrast, snakes in eastern Ontario carry either Central or Eastern-specific haplotypes. Within the hybrid region, we found highly variable frequencies of mtDNA haplotypes among isolated sub-populations, no association between variation in cytonuclear (mtDNA) and nuclear (microsatellite DNA) markers, no difference in survival or reproductive success among snakes with different mtDNA haplotypes, and no effect of mate similarity in mtDNA on female clutch size. These results argue that the Eastern and Central phylogroups have merged in this region, likely due to a lack of adaptive differentiation between individuals in each lineage. Hence, in these snakes, phylogeographic structure in mtDNA is more a reflection of historical isolation rather than adaptive divergence. The observed reticulation between lineages and lack of evidence for hybrid disgenesis also bears on the classification of these lineages as distinct species.  相似文献   

8.
Aim A large body of knowledge exists on individual anthropogenic threats that have an impact on marine biodiversity in the Mediterranean Sea, although we know little about how these threats accumulate and interact to affect marine species and ecosystems. In this context, we aimed to identify the main areas where the interaction between marine biodiversity and threats is more pronounced and to assess their spatial overlap with current marine protected areas in the Mediterranean. Location Mediterranean Sea. Methods We first identified areas of high biodiversity of marine mammals, marine turtles, seabirds, fishes and commercial or well‐documented invertebrates. We mapped potential areas of high threat where multiple threats are occurring simultaneously. Finally we quantified the areas of conservation concern for biodiversity by looking at the spatial overlap between high biodiversity and high cumulative threats, and we assessed the overlap with protected areas. Results Our results show that areas with high marine biodiversity in the Mediterranean Sea are mainly located along the central and north shores, with lower values in the south‐eastern regions. Areas of potential high cumulative threats are widespread in both the western and eastern basins, with fewer areas located in the south‐eastern region. The interaction between areas of high biodiversity and threats for invertebrates, fishes and large animals in general (including large fishes, marine mammals, marine turtles and seabirds) is concentrated in the coastal areas of Spain, Gulf of Lions, north‐eastern Ligurian Sea, Adriatic Sea, Aegean Sea, south‐eastern Turkey and regions surrounding the Nile Delta and north‐west African coasts. Areas of concern are larger for marine mammal and seabird species. Main conclusions These areas may represent good candidates for further research, management and protection activities, since there is only a maximum 2% overlap between existing marine protected areas (which cover 5% of the Mediterranean Sea) and our predicted areas of conservation concern for biodiversity.  相似文献   

9.
The southeastern coastal plain of the United States is a region marked by extraordinary phylogeographic congruence that is frequently attributed to the changing sea levels that occurred during the glacial‐interglacial cycles of the Pleistocene epoch. A phylogeographic break corresponding to the Apalachicola River has been suggested for many species studied to date that are endemic to this region. Here, we used this pattern of phylogeographic congruence to develop and test explicit hypotheses about the genetic structure in the ornate chorus frog (Pseudacris ornata). Using 1299 bp of mtDNA sequence and seven nuclear microsatellite markers in 13 natural populations of P. ornata, we found three clades corresponding to geographically distinct regions; one spans the Apalachicola River (Southern Clade), one encompasses Georgia and South Carolina (Central Clade) and a third comprises more northerly individuals (Northern Clade). However, it does not appear that typical phylogeographic barriers demarcate these clades. Instead, isolation by distance across the range of the entire species explained the pattern of genetic variation that we observed. We propose that P. ornata was historically widespread in the southeastern United States, and that a balance between genetic drift and migration was the root of the genetic divergence among populations. Additionally, we investigated fine‐scale patterns of genetic structure and found the spatial scale at which there was significant genetic structure varied among the regions studied. Furthermore, we discuss our results in light of other phylogeographic studies of southeastern coastal plain organisms and in relation to amphibian conservation and management.  相似文献   

10.
The phylogeography of common and widespread species helps to elucidate the history of local flora and vegetation. In this study, we selected Cotinus coggygria, a species widely distributed in China's warm‐temperate zone. One chloroplast DNA (cpDNA) region and ecological niche modelling were used to examine the phylogeographic pattern of C. coggygria. The cpDNA data revealed two phylogeographic groups (Southern and Northern) corresponding to the geographic regions. Divergence time analyses revealed that divergence of the two groups occurred at approximately 147,000 years before the present (BP), which coincided with the formation of the downstream area of the Yellow River, indicating that the Yellow River was a weak phylogeographic divide for C. coggygria. The molecular data and ecological niche modelling also indicated that C. coggyria did not experience population expansion after glaciations. This study thus supports the fact that Pleistocene glacial cycles only slightly affected C. coggygria, which survived in situ and occupied multiple localised glacial refugia during glaciations. This finding is contrary to the hypothesis of large‐scale range habitat contraction and retreat into a few main refugia.  相似文献   

11.
The distribution of mating types of Ascochyta rabiei (teleomorph: Didymella rabiei) was determined in Tunisia using a MAT‐specific PCR assay. Among 123 isolates tested, 80% were MAT1‐1 and 20%MAT1‐2. Only MAT1‐1 isolates were present in the Beja and Bizerte regions of Tunisia, whereas both mating types were present in Nabeul, Kef and Jendouba. In the latter three regions, the hypothesis of random mating could not be rejected based on chi‐squared tests of mating‐type ratios (P > 0.05). The lower frequency of the MAT1‐2 coupled with the restricted distribution of this mating type in Tunisia may indicate a recent introduction of MAT1‐2 in Tunisia. This speculation is consistent with the recent (2001) observation of D. rabiei pseudothecia on chickpea debris in Tunisia. Forty isolates representative of the five regions were genetically analysed using 10 random amplified polymorphic DNA (RAPD) primers to provide a preliminary estimate of genetic diversity of the pathogen in Tunisia. Among 129 putative RAPD loci amplified, 81% were polymorphic and 32 unique RAPD fingerprints were detected. A high level of genetic differentiation was detected among subpopulations (GST = 0.33). Cluster analyses revealed that isolates from Bizerte, Beja and Jendouba were genetically similar and distinct from isolates sampled in Nabeul and Kef. MAT1‐1 isolates were clustered separately from MAT1‐2 isolates in Jendouba and Nabeul suggesting that recombination may not yet be occurring in these regions despite the occurrence of both mating types in equal frequency in these regions. This lack of recombination between MAT1‐1 and MAT1‐2 also supports the hypothesis of a recent introduction of MAT1‐2 into Tunisia.  相似文献   

12.
Aim Phylogeography provides a framework to explain and integrate patterns of marine biodiversity at infra‐ and supra‐specific levels. As originally expounded, the phylogeographic hypotheses are generalities that have limited discriminatory power; the goal of this study is to generate and test specific instances of the hypotheses, thereby better elucidating both local patterns of evolution and the conditions under which the generalities do or do not apply. Location Coastal south‐east Australia (New South Wales, Tasmania and Victoria), and south‐west North America (California and Baja California). Methods Phylogeographic hypotheses specific to coastal south‐east Australia were generated a priori, principally from existing detailed distributional analyses of echinoderms and decapods. The hypotheses are tested using mitochondrial cytochrome c oxidase subunit I (COI) and nuclear internal transcribed spacer 1 (ITS1) DNA sequence data describing population variation in the jellyfish Catostylus mosaicus, integrated with comparable data from the literature. Results Mitochondrial COI distinguished two reciprocally monophyletic clades of C. mosaicus (mean ± SD: 3.61 ± 0.40% pairwise sequence divergence) that were also differentiated by ITS1 haplotype frequency differences; the boundary between the clades was geographically proximate to a provincial zoogeographic boundary in the vicinity of Bass Strait. There was also limited evidence of another genetic inhomogeneity, of considerably smaller magnitude, in close proximity to a second hypothesized zoogeographic discontinuity near Sydney. Other coastal marine species also show genetic divergences in the vicinity of Bass Strait, although they are not closely concordant with each other or with reported biogeographic discontinuities in the region, being up to several hundreds of kilometres apart. None of the species studied to date show a strong phylogeographic discontinuity across the biogeographic transition zone near Sydney. Main conclusions Patterns of evolution in the Bass Strait and coastal New South Wales regions differ fundamentally because of long‐term differences in extrinsic factors. Since the late Pliocene, periods of cold climate and low sea‐level segregated warm temperate organisms east or west of an emergent Bassian Isthmus resulting in population divergence and speciation; during subsequent periods of warmer and higher seas, sister taxa expanded into the Bass Strait region leading to weakly correlated phylogeographic and biogeographic patterns. The Sydney region, by contrast, has been more consistently favourable to shifts in species’ ranges and long‐distance movement, resulting in a lack of intra‐specific and species‐level diversification. Comparisons between the Sydney and Bass Strait regions and prior studies in North America suggest that vicariance plays a key role in generating coastal biodiversity and that dispersal explains many of the deviations from the phylogeographic hypotheses.  相似文献   

13.
The Coral Triangle (CT) region of the Indo‐Pacific realm harbors an extraordinary number of species, with richness decreasing away from this biodiversity hotspot. Despite multiple competing hypotheses, the dynamics underlying this regional diversity pattern remain poorly understood. Here, we use a time‐calibrated evolutionary tree of living reef coral species, their current geographic ranges, and model‐based estimates of regional rates of speciation, extinction, and geographic range shifts to show that origination rates within the CT are lower than in surrounding regions, a result inconsistent with the long‐standing center of origin hypothesis. Furthermore, endemism of coral species in the CT is low, and the CT endemics are older than relatives found outside this region. Overall, our model results suggest that the high diversity of reef corals in the CT is largely due to range expansions into this region of species that evolved elsewhere. These findings strongly support the notion that geographic range shifts play a critical role in generating species diversity gradients. They also show that preserving the processes that gave rise to the striking diversity of corals in the CT requires protecting not just reefs within the hotspot, but also those in the surrounding areas.  相似文献   

14.
An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that life-history evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time.  相似文献   

15.
Degenerate PCR and chromosome-walking approaches were used to identify mating-type (MAT) genes and flanking regions from the homothallic (sexually self-fertile) euascomycete fungus Neosartorya fischeri, a close relative of the opportunistic human pathogen Aspergillus fumigatus. Both putative alpha- and high-mobility-group-domain MAT genes were found within the same genome, providing a functional explanation for self-fertility. However, unlike those in many homothallic euascomycetes (Pezizomycotina), the genes were not found adjacent to each other and were termed MAT1 and MAT2 to recognize the presence of distinct loci. Complete copies of putative APN1 (DNA lyase) and SLA2 (cytoskeleton assembly control) genes were found bordering the MAT1 locus. Partial copies of APN1 and SLA2 were also found bordering the MAT2 locus, but these copies bore the genetic hallmarks of pseudogenes. Genome comparisons revealed synteny over at least 23,300 bp between the N. fischeri MAT1 region and the A. fumigatus MAT locus region, but no such long-range conservation in the N. fischeri MAT2 region was evident. The sequence upstream of MAT2 contained numerous candidate transposase genes. These results demonstrate a novel means involving the segmental translocation of a chromosomal region by which the ability to undergo self-fertilization may be acquired. The results are also discussed in relation to their significance in indicating that heterothallism may be ancestral within the Aspergillus section Fumigati.  相似文献   

16.
Invasions of freshwater habitats by marine and brackish species have become more frequent in recent years with many of those species originating from the Ponto‐Caspian region. Populations of Ponto‐Caspian species have successfully established in the North and Baltic Seas and their adjoining rivers, as well as in the Great Lakes–St. Lawrence River region. To determine if Ponto‐Caspian taxa more readily acclimatize to and colonize diverse salinity habitats than taxa from other regions, we conducted laboratory experiments on 22 populations of eight gammarid species native to the Ponto‐Caspian, Northern European and Great Lakes–St. Lawrence River regions. In addition, we conducted a literature search to survey salinity ranges of these species worldwide. Finally, to explore evolutionary relationships among examined species and their populations, we sequenced the mitochondrial cytochrome c oxidase subunit I gene (COI) from individuals used for our experiments. Our study revealed that all tested populations tolerate wide ranges of salinity, however, different patterns arose among species from different regions. Ponto‐Caspian taxa showed lower mortality in fresh water, while Northern European taxa showed lower mortality in fully marine conditions. Genetic analyses showed evolutionary divergence among species from different regions. Due to the geological history of the two regions, as well as high tolerance of Ponto‐Caspian species to fresh water, whereas Northern European species are more tolerant of fully marine conditions, we suggest that species originating from the Ponto‐Caspian and Northern European regions may be adapted to freshwater and marine environments, respectively. Consequently, the perception that Ponto‐Caspian species are more successful colonizers might be biased by the fact that areas with highest introduction frequency of NIS (i.e., shipping ports) are environmentally variable habitats which often include freshwater conditions that cannot be tolerated by euryhaline taxa of marine origin.  相似文献   

17.
It is widely believed that species richness patterns (SRPs) are shaped by both ecological and evolutionary processes. However, the relative roles of these processes remain unclear, especially for aquatic organisms. In this study, we integrated ecological and evolutionary measures to tease apart the relative influences of these factors on the SRP of Tibetan loaches along an extensive elevational gradient. We found that the Tibetan loaches displayed a richness pattern that peaked at midelevations. The mean annual temperature (MAT), mid‐domain effect (MDE), and summed age of colonization (SAC, complex of colonization age and colonization frequency) were the main drivers, accounting for 85%, 51%, and 88% of the variations in the SRP, respectively. The three predictors had very high combined effects (MAT‐MDE‐SAC, MAT‐SAC, and MDE‐SAC were 44%, 38%, and 6%, respectively). Our analyses suggested that energy input, time‐for‐speciation, and species dispersal may directly guide the SRP or mediate it by geometric constraints. Conclusively, the SRP of the Tibetan loaches with elevation is the outcome of interactions between biogeographical processes and regional ecological conditions.  相似文献   

18.
雪豹(Panthera uncia)隶属于食肉目猫科豹属,是生活在青藏高原及其周边地区的旗舰物种。随着分子生物学和高通量测序技术的发展,雪豹保护遗传学和保护基因组学研究得到快速的发展,其中非损伤性遗传取样法显著推动了雪豹保护遗传学研究。本文综述了非损伤性遗传取样法在雪豹物种鉴定、个体识别和性别鉴定等研究中的应用,雪豹的系统发生地位、系统地理格局和种群遗传结构及其亚种争议、演化历史、适应性演化和基因组特征等保护遗传学和基因组学方面的研究现状和进展,并对雪豹保护遗传学和基因组学未来发展趋势进行了展望,以期促进雪豹保护生物学研究和保护对策的科学制定。  相似文献   

19.
The chemical composition and pharmacological effects of Cordyceps militaris are similar to those of Cordyceps sinensis, with the former undergoing greater development and utilization. Strain degeneration is a common phenomenon that occurs with high frequency during the subculturing of C. militaris, however, and the mechanism underlying strain degeneration remains unclear. In this study, we used touch‐down PCR to compare the ITS1 + 5.8S + ITS2, 18S, 28S and mating‐type (MAT) regions sequence of wild‐type and degenerated strains of C. militaris. We also used quantitative real‐time PCR to analyze expression levels of the CmMAT gene. Sequence analysis showed that the ITS1 + 5.8S + ITS2 and 28S regions of degenerated and wild‐type strains were completely identical, the 18S region of the degenerated strain contained seven single‐base mutations, including six base substitutions and one single‐base insertion. Compared with the wild‐type strain, the degenerated strain contained a deletion of the MAT1–2‐1 region, three base substitutions in the MAT1–1‐1 region, and a base substitution in the MAT1–1‐2 region that causes a glycine‐to‐valine amino acid substitution. Quantitative real‐time PCR analysis detected no CmMAT1–2‐1 gene expression in the degenerated strain, confirming the deletion of the CmMAT1–2‐1 gene. Expression levels of the CmMAT1–1‐1 and CmMAT1–1‐2 genes were significantly down‐regulated to only 7.5 % and 4.4 %, respectively, that of the wild‐type strain. These results indicate that 18S and MAT region mutations, as well as down‐regulated of CmMAT gene expression levels, may play important roles in C. militaris degeneration. This study provides a theoretical basis for further elucidation of the molecular mechanisms of C. militaris degeneration.  相似文献   

20.
Aegilops caudata L. is a diploid wild relative of wheat distributed over the north-eastern Mediterranean from Greece to northern Iraq. To elucidate the geographical differentiation pattern, 35 accessions derived from the entire distribution area were crossed with four Tester strains. Pollen fertility in the F1 hybrids varied from 0 to 96.3% among cross combinations, closely correlating with the geographical regions where the parental accessions were collected. Based on the intraspecific hybrid sterility, the present distribution area of Ae. caudata was divided into two geographical regions effectively isolated by the mountainous region lying between West Anatolia and Central Anatolia. The western region is composed of Greece and West Anatolia, while the eastern region consists of Central Anatolia, South Anatolia, East Anatolia and northern Iraq. The present results and the facts from recent palaeopalynological works suggest that during the maximum glacial period from 18,000 BP to 16,000 BP, Ae. caudata occurred in the two isolated regions, i.e., the region surrounding the Aegean Sea and the western Levant or some sheltered habitats in the East Taurus/Zagros mountains arc, and that it migrated into Central and East Anatolia from the latter regions as the climate became warmer. Furthermore, it is also suggested that the Levant populations now occur in the eastern region of the distribution, while those occurring in the Aegean Sea region during the last glacial period now occupy the western region of the distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号