首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a stable expression system for conformationally intact recombinant human PR3 (rPR3) using the human mast cell line HMC-1. Like in U937 cells, the rPR3 is processed from a 34 kDa precursor to the 29 kDa mature form, primarily as the result of oligosaccharide trimming. The rPR3 binds [3H]DFP and hydrolyzes the substrate N-methoxysuccinyl-Ala-Ala-Ala-Pro-Val-pNA. The enzymatic activity is inhibited by greater than 95% by 1-PI. The rPR3 and the enzymatically inactive mutant rPR3-S176A are both packaged in granules. Thus, proteolytic autoprocessing is not required for PR3's targeting to granules. This rPR3 is the first to be recognized by most c-ANCA from WG patients and all anti-PR3 ANCA that were detected by standard anti-PR3 specific ELISA. This expression system for rPR3 represents a versatile tool for the analysis of its intracellular processing, structure-function relationships and interaction with autoantibodies.  相似文献   

2.
The neutrophil granulocyte is an important first line of defense against intruding pathogens and it contains a range of granules armed with antibacterial peptides and proteins. Proteinase 3 (PR3) is one among several serine proteases of the azurophilic granules in neutrophil granulocytes. Here, we characterize the glycosylation of PR3 and its association with antimicrobial human neutrophil peptides (HNPs, α-defensins) and the effect of these on the mechanism of inhibition of the major plasma inhibitor of PR3, α1-antitrypsin. The glycosylation of purified, mature PR3 showed some heterogeneity with carbohydrates at Asn 102 and 147 carrying unusual small moieties indicating heavy processing. Mass spectrometric analysis and immuno blotting revealed strong association of highly purified PR3 with α-defensins and oligomers hereof. Irreversible inhibition of PR3 by α1-antitrypsin did not affect its association with defensins. Other proteins from neutrophil granules were also found to be associated with defensins, whereas purified plasma proteins did not carry defensins. These results point to a role of defensins in controlling and targeting the activity of neutrophil granule proteins.  相似文献   

3.
The neutrophil azurophil granule constituent proteinase 3 (PR3) is the principal antigen for anti-neutrophil cytoplasmic antibodies (ANCA) in Wegener's granulomatosis. The conformation of the mature PR3 enzyme results from intracellular post-translational processing. The nascent molecule undergoes proteolytic cleavage of the amino-terminal signal peptide and activation dipeptide and of a carboxy-terminal peptide extension. The conformation of PR3 is stabilized by four disulfide bonds and, to a lesser extent, by asparagine-linked glycosylation. Most anti-neutrophil cytoplasmic antibodies directed against proteinase 3 (PR3-ANCA) recognize conformational epitopes. The expression of recombinant PR3 has provided a better understanding of the significance of the various intracellular processing steps for enzymatic activity and recognition by PR3-ANCA.  相似文献   

4.
The neutrophil azurophil granule constituent proteinase 3 (PR3) is the principal antigen for anti-neutrophil cytoplasmic antibodies (ANCA) in Wegener's granulomatosis. The conformation of the mature PR3 enzyme results from intracellular post-translational processing. The nascent molecule undergoes proteolytic cleavage of the amino-terminal signal peptide and activation dipeptide and of a carboxy-terminal peptide extension. The conformation of PR3 is stabilized by four disulfide bonds and, to a lesser extent, by asparagine-linked glycosylation. Most anti-neutrophil cytoplasmic antibodies directed against proteinase 3 (PR3-ANCA) recognize conformational epitopes. The expression of recombinant PR3 has provided a better understanding of the significance of the various intracellular processing steps for enzymatic activity and recognition by PR3-ANCA.  相似文献   

5.
To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30–50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.  相似文献   

6.
Although proteinase 3 (PR3) has been identified as a major autoantigen in Wegener's granulomatosis, the precise antibody specificity(ies) and requirements for epitope recognition have not been characterized. We analyzed 11 sera containing antineutrophil cytoplasmic antibodies (cANCA) for binding to azurophilic granule proteins extracted from neutrophils under various conditions and for binding to native or rPR3. Ten of 11 (91%) of the cANCA sera bound to PR3 extracted by nonionic detergents when tested by immunoprecipitation or by IEF followed by capillary immunoblotting. Antibody binding to PR3 was retained when IEF was performed under dissociating conditions (8 M urea) indicating that PR3 is the major autoantigen in azurophilic granules and that association with other proteins is not required for antigenicity. In contrast, antigenicity was totally destroyed by exposure of PR3 to reducing agents or to low pH (less than 3.0) and was either lost or considerably diminished after boiling in SDS. cANCA sera also showed little or no binding to rPR3 expressed as a fusion protein in Escherichia coli or synthesized by wheat germ ribosomes in vitro. Inasmuch as PR3 enzymatic activity was partially retained after acid extraction, these findings indicate that cANCA bind to a limited number of conformational epitopes on PR3. In addition, IEF followed by capillary immunoblotting appears to be a sensitive and specific method to detect anti-PR3 antibodies in Wegener's granulomatosis.  相似文献   

7.
Two forms of the gonadotropin alpha subunit are synthesized in placenta and in human chorionic gonadotropin (hCG)-producing tumors: an uncombined (monomer) form and a combined (dimer) form. These forms show differences in their migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The slower migration of the monomeric form on sodium dodecyl sulfate-polyacrylamide gel electrophoresis has been attributed to a different glycosylation pattern. Previous studies demonstrated different roles of each of the two alpha N-linked glycosylation sites (Asn-52 and Asn-78) in secretion of the uncombined subunit and the biologic activity of hCG dimer. To assess the influence of formation of dimer on the processing pattern at the individual sites, we characterized the N-linked oligosaccharides of monomer and dimer forms of recombinant human choriogonadotropin alpha subunit. Two approaches were employed. First, site-directed mutagenesis was used to alter the two N-linked oligosaccharide attachment sites, thus allowing the expression of alpha subunits containing only one glycosylation site. Second, tryptic glycopeptides of the wild-type subunits were examined. Concanavalin A (ConA) binding and sialic acid content indicated that the oligosaccharides at each glycosylation site of the uncombined alpha subunit are processed differently. Oligosaccharides present at Asn-52 are almost exclusively ConA-unbound and contain three sialic acid residues. The majority of Asn-78-linked oligosaccharides are ConA-bound and disialylated. Both sites are processed independently because no significant differences were observed between the oligosaccharides at the same sites in wild-type and mutant monomeric alpha subunits. By contrast, the majority of the oligosaccharides at both glycosylation sites of the dimer alpha are bound to ConA. Thus, combination primarily affects the processing pattern of the Asn-52-linked species. Because glycosylation at this site is essential for hCG assembly and signal transduction, these data imply a critical link between the site-specific processing and hormone function.  相似文献   

8.
Lysosome membrane glycoproteins, lamp-1 and lamp-2, have been shown to contain 18 and 16 N-glycans, some of which are modified by poly-N-acetyl-lactosamine. We have localized the polylactosaminoglycans to specific sites on lamp-1 and lamp-2 purified from human chronic myelogenous leukemia cells. Polylactosaminoglycan-containing glycopeptides, obtained by trypsin, pepsin, and V8 protease digestion of the glycoproteins, were isolated by Datura stramonium agglutinin affinity chromatography, gel filtration, and reverse phase high performance liquid chromatography. The poly-N-acetyllactosaminyl structures of isolated glycopeptides were confirmed by the susceptibility of their released oligosaccharides to endo-beta-galactosidase. Amino acid analysis and sequencing demonstrated that polylactosaminoglycans were located at Asn-34, Asn-93 and/or Asn-102, and Asn-195 and/or Asn-200 in lamp-1, and at Asn-4 and/or Asn-10, and Asn-279 in lamp-2. These results indicated that only certain glycosylation sites can be selectively modified by poly-N-acetyllactosamine, and those sites may confer the requirement by beta 1----3-N-acetylglucosaminyl transferase.  相似文献   

9.
Proteinase 3 (PR3) is a serine protease of neutrophil granules released to the medium or into the phagocytic vesicle upon neutrophil stimulation. A fraction of the enzyme is thought to associate with the cell membrane yielding membrane PR3 (mPR3). In autoimmune disorders characterized by the presence of antineutrophil cytoplasmic antibodies (ANCA), the reaction of the latter with their target antigen mPR3 activates the cell inflicting injuries on the surrounding tissues. In a previous communication we provided evidence for the presence of mPR3 in lipid rafts obtained by lysis of neutrophils in Triton X-100 and for the mediation of PR3 binding to the membrane by a glycosylphosphatidylinositol (GPI)-anchored neutrophil protein, possibly FcgammaRIIIb. In the current study we employed the mild detergent Brij 58 to isolate high molecular weight (HMW) protein complexes in the void volume of a Sepharose 4B gel filtration minicolumn. HMW complexes of unstimulated neutrophils comprised PR3, FcgammaRIIIb, the beta2 integrin CD11b/CD18 as well as the membrane and cytosolic subunits of the NADPH oxidase, p22phox and p47phox/p67phox. Treatment of neutrophils with phosphatidylinositol-specific phospholipase C (PI-PLC) reduced amounts of PR3 and FcgammaRIIIb in HMW complexes isolated from the treated cells, supporting our previous suggestion that FcgammaRIIIb acts as a membrane adaptor for PR3. FcgammaRIIIb of HMW fractions co-immunoprecipitated with PR3, indicating their presence in the same protein complex. Since HMW fractions contained also the majority of biotinylated proteins obtained by the reaction of neutrophils with a membrane impermeable biotinylating agent Sulfo-NHS-biotin, it was concluded that HMW proteins were derived from cell membranes. Lipid rafts isolated from Brij 58-lysed neutrophils were similar in their protein composition to the HMW complexes but not identical.  相似文献   

10.
Proteinase 3 (PR3) is a neutrophil-derived serine proteinase localized within cytoplasmic granules which can be released upon activation. PR3 is exposed at the neutrophil plasma membrane where it can mediate proinflammatory effects. Moreover, PR3 membrane expression is of special relevance in patients with Wegener's granulomatosis, a systemic vasculitis presenting anticytoplasmic neutrophil autoantibodies (ANCA) against PR3, which can bind to PR3 expressed at the surface of neutrophils and amplify their activation state. Therefore, it is of special relevance to unravel the molecular mechanisms governing its association with the membrane to be able to modulate it. To this end, we performed molecular dynamics (MD) simulations of PR3 with the implicit membrane model IMM1-GC to identify its interfacial binding site (IBS). Both the energies and structures resulting from the MD suggest that PR3 associates strongly with anionic membranes. We observe a unique IBS consisting of five basic (R177, R186A, R186B, K187, R222) and six hydrophobic (F165, F166, F224, L223, F184, W218) amino acids. The basic residues provide the driving force to orient PR3 at the membrane surface, so that the hydrophobic residues can anchor into the hydrocarbon region. Energy decomposition and in silico mutations show that only a few residues account for the membrane association. Similar calculations with HNE suggest a different membrane-binding mechanism. Our results agree with previous experimental observations and this work predicts, for the first time, the structural determinants of the binding of PR3 to membranes.  相似文献   

11.
The relaxin receptor, RXFP1, is a member of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family. These receptors are characterized by a large extracellular ectodomain containing leucine-rich repeats which contain the primary ligand binding site. RXFP1 contains six putative Asn-linked glycosylation sites in the ectodomain at positions Asn-14, Asn-105, Asn-242, Asn-250, Asn-303, and Asn-346, which are highly conserved across species. N-Linked glycosylation is the most common post-translational modification of G-protein-coupled receptors, although its role in modulating receptor function differs. We herein investigate the actual N-linked glycosylation status of RXFP1 and the functional ramifications of these post-translational modifications. Site-directed mutagenesis was utilized to generate single- or multiple-glycosylation site mutants of FLAG-tagged human RXFP1 which were then transiently expressed in HEK-293T cells. Glycosylation status was analyzed by immunoprecipitation and Western blot and receptor function analyzed with an anti-FLAG ELISA, (33)P-H2 relaxin competition binding, and cAMP activity measurement. All of the potential N-glycosylation sites of RXFP1 were utilized in HEK-293T cells, and importantly, disruption of glycosylation at individual or combinations of double and triple sites had little effect on relaxin binding. However, combinations of glycosylation sites were required for cell surface expression and cAMP signaling. In particular, N-glycosylation at Asn-303 of RXFP1 was required for optimal intracellular cAMP signaling. Hence, as is the case for other LGR family members, N-glycosylation is essential for the transport of the receptor to the cell surface. Additionally, it is likely that glycosylation is also essential for the conformational changes required for G-protein coupling and subsequent cAMP signaling.  相似文献   

12.
The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes.  相似文献   

13.
Proteinase 3 (PR3), the target antigen of antineutrophil cytoplasm autoantibodies, which are found in patients with Wegener granulomatosis, is a neutrophil serine protease localized within cytoplasmic granules. Recently, the human neutrophil antigen NB1 was identified as a specific neutrophil cell surface receptor of PR3. We hypothesized that the unique hydrophobic cluster of PR3 that is not present on human neutrophil elastase and cathepsin G and presumably is also missing in other human PR3 homologs accounts for its binding to the NB1 receptor expressed on the cellular surface of NB1 cells. Instead of generating and testing various artificial human PR3 mutants, we cloned and expressed the very closely related gibbon (Hylobates pileatus) PR3 homolog, which did not bind to the human NB1 receptor. Moreover, a human-gibbon hybrid constructed from the N- and C-terminal half of the human and gibbon PR3, respectively, also did not interact with human NB1. The C-terminal half of gibbon PR3 differs only by 9 residues from human PR3, among which four closely spaced hydrophobic residues are substituted in a nonconservative manner (F166L, W218R, G219A, and L223H). The NB1-bound PR3 was active and was cleared from the surface by alpha-1-protease inhibitor. Conformational distortion of the hydrophobic 217-225 loop by alpha-1-protease inhibitor most likely triggers rapid solubilization.  相似文献   

14.
Human protein C (HPC) is an antithrombotic serine protease that circulates in the plasma as several glycoforms. To examine the role of glycosylation in the function of this protein, we singly eliminated each of the four potential N-linked glycosylation sites by site-directed mutagenesis of Asn to Gln at amino acid positions 97, 248, and 313 (HPC derivatives Q097, Q248, and Q313) or at the unusual consensus sequence Asn-X-Cys at 329 (HPC derivative Q329). The cDNAs for wild type and each derivative were inserted into expression vectors and expressed both transiently and stably in human 293 and hamster AV12-664 cells. We demonstrate that N-linked glycosylation at position 97 in the light chain of HPC is critical for efficient secretion and affects the degree of core glycosylation at Asn-329. Glycosylation at position 248 affects the intracellular processing of the internal Lys-Arg (KR) KR cleavage site, and partial glycosylation at the sequence Asn-329-X-Cys is responsible for the natural alpha-glycoform. Altering the glycosylation pattern of the protein had no significant effect on the level of fully gamma-carboxylated HPC secreted from the 293 cell line. However, elimination of glycosylation sites in the heavy chain resulted in a 2- to 3-fold increase in anticoagulant activity. Utilizing synthetic substrate, both the Km and kcat were affected, depending on the specific glycosylation site eliminated. However, there were no significant differences in the inhibition kinetics by alpha-1-antitrypsin (association rate constants of 10-11 M-1s-1 and t1/2 of 27-29 min at 40 microM alpha-1-antitrypsin) or t1/2 in human plasma (17-18 min). A comparison of the rate of activation of each derivative by thrombin alone or in complex with thrombomodulin revealed that Q313 was activated approximately 2.5-fold faster than wt HPC, independent of calcium concentration. This increase in rate was due to an enhanced affinity of thrombin-thrombomodulin for Q313, as indicated by a 3-fold reduction in Km. Overall, our studies demonstrate that glycosylation at different sites in HPC affects distinct properties of this complex protein. Furthermore, we demonstrate the ability to improve the catalytic efficiency of this enzyme through carbohydrate modifications.  相似文献   

15.
Human calcitonin receptor (hCTR) subtypes contain three or four potential Asn-linked glycosylation sites in their extracellular amino termini. The role of glycosylation in hCTR function has not been identified, but it has been suggested that inhibition of glycosylation does not affect binding or signaling. To determine the role of glycosylation in hCTR biology, we studied the effects of inhibition of glycosylation and of substitution of Asn residues that are potential glycosylation sites. Native and mutated hCTRs were studied after transient expression in monkey kidney COS-1 cells. Tunicamycin, administered as part of a treatment protocol that inhibited glycosylation of all expressed receptors, decreased salmon calcitonin (sCT) binding affinities and signaling potencies at hCTRs with three or four potential glycosylation sites. In hCTR3, which contains three potential glycosylation sites at positions 26, 78, and 83, site-specific substitution of Asn-26 by Ala had no effect on sCT binding affinity or potency, whereas substitution of Asn-78 or Asn-83 lowered sCT affinity and potency. A mutant hCTR3 in which all three Asn residues were substituted with Ala exhibited no high-affinity sCT binding and potencies of several calcitonin analogues that were more than 100-fold lower than that of native hCTR3. Our data show that glycosylation is important for high-affinity binding and potency of calcitonin analogues at hCTRs.  相似文献   

16.
CD177 is a neutrophil-specific receptor presenting the proteinase 3 (PR3) autoantigen on the neutrophil surface. CD177 expression is restricted to a neutrophil subset, resulting in CD177pos/mPR3high and CD177neg/mPR3low populations. The CD177pos/mPR3high subset has implications for antineutrophil cytoplasmic autoantibody (ANCA)–associated autoimmune vasculitis, wherein patients harbor PR3-specific ANCAs that activate neutrophils for degranulation. Here, we generated high-affinity anti-CD177 monoclonal antibodies, some of which interfered with PR3 binding to CD177 (PR3 “blockers”) as determined by surface plasmon resonance spectroscopy and used them to test the effect of competing PR3 from the surface of CD177pos neutrophils. Because intact anti-CD177 antibodies also caused neutrophil activation, we prepared nonactivating Fab fragments of a PR3 blocker and nonblocker that bound specifically to CD177pos neutrophils. We observed that Fab blocker clone 40, but not nonblocker clone 80, dose-dependently reduced anti-PR3 antibody binding to CD177pos neutrophils. Importantly, preincubation with clone 40 significantly reduced respiratory burst in primed neutrophils challenged with either monoclonal antibodies to PR3 or PR3–ANCA immunoglobulin G from ANCA-associated autoimmune vasculitis patients. After separating the two CD177/mPR3 neutrophil subsets from individual donors by magnetic sorting, we found that PR3–ANCAs provoked significantly more superoxide production in CD177pos/mPR3high than in CD177neg/mPR3low neutrophils, and that anti-CD177 Fab clone 40 reduced the superoxide production of CD177pos cells to the level of the CD177neg cells. Our data demonstrate the importance of the CD177:PR3 membrane complex in maintaining a high ANCA epitope density and thereby underscore the contribution of CD177 to the severity of PR3–ANCA diseases.  相似文献   

17.
T Watanabe  N Wada  J Y Chou 《Biochemistry》1992,31(12):3051-3058
Human germ cell alkaline phosphatase (GCAP), which shares 98% amino acid sequence identity with the placental AP (PLAP), is expressed by malignant trophoblasts. Protein sequence analysis suggests that the Ser residue at position 92 is the putative active site of GCAP which contains two recognition sequences (Asn122-Thr-Thr124 and Asn249-Arg-Thr251) for asparagine-linked glycosylation. To examine the roles of the Ser residue and glycan moieties on GCAP activity and processing, we altered the GCAP cDNA by site-directed mutagenesis and expressed the GCAP mutants in COS-1 cells. Substitution of Ser-92 with either a Thr (S92T) or an Ala (S92A) residue yielded a GCAP devoid of catalytic activity, suggesting that the Ser codon 92 is the active site of GCAP. Six GCAP mutants that lack one or both glycosylation sites were constructed by substituting either Asn-122 or Asn-249 with an Asp residue or either Thr-124 or Thr-251 with an Ala residue. The mature GCAP migrated as a 65-kDa product, but GCAP mutants lacking one or both glycosylation sites migrated as 62- or 58-kDa polypeptides, respectively, indicating that both sites were glycosylated. All six glycosylated mutants were active enzymatically and, in addition, were equally sensitive to heat, L-leucine, and EDTA inhibition as the parental enzyme. GCAP as well as its two active-site and six glycosylation mutants could be released from the plasma membrane of transfected COS-1 cells by the proteinase bromelain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Wiik A 《Arthritis research》2000,2(4):252-254
Anti-neutrophil cytoplasmic antibodies (ANCA) have become important diagnostic markers of small vessel vasculitides characterized by focal necrotizing lesions of vessel walls and accumulation of lymphocytes and macrophages around the affected vessels. IgG class ANCA directed to proteinase 3 (PR3) of neutrophils and monocytes seem to be directly involved in the pathophysiology of vascular damage by causing excessive neutrophil activation and vessel wall destruction. PR3 and elastase are important players in the mechanisms of vascular necrosis. Methods of detecting ANCA have now been defined but are not uniformly used, even though clinical decisions heavily depend on correct ANCA results.  相似文献   

19.
Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.  相似文献   

20.
Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins’ different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号