首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seventeen new-born piglets of hybrid stock were tested for defects of neuromuscular transmission by stimulation electromyography (EMG). Nine of these displayed extreme symptoms of muscle weakness (splayleg), while the others were their clinically normal littermates. Muscles from four different functional groups were investigated, including the gastrocnemius, tibialis anterior, knee flexors and thigh adductors. Repetitive stimulation of muscle nerves at 3 Hz gave comparable peak-to-peak amplitudes of the EMG response in splayleg and control piglets (mean values from 5 to 10 mV). The lowest mean EMG response values at this stimulation frequency were found in splayleg adductor muscles of the thigh which were not, however significantly different from the controls. Higher frequencies of stimulation (30, 50 and 100 Hz), in general, led to a less pronounced decrease of EMG amplitude in splayleg piglet muscles than in the controls, with the exception of knee flexors. Neither splayleg nor control muscles exhibited post-activation exhaustion or post-tetanic potentiation. It is being concluded from these results that congenital myofibrillar hypoplasia is not primarily a myasthenia-like syndrome, but that either excitation-contraction coupling or the contractile mechanism itself are primarily affected.  相似文献   

3.
The objective of this study was to investigate the potential role of the caspase protease family in meat tenderisation by examining if caspase 3 was capable of causing myofibril protein degradation. Full-length human recombinant caspase 3 (rC3) was expressed in Escherichia coli and purified. The rC3 was active in the presence of myofibrils isolated from porcine longissimus dorsi muscle (LD) and retained activity in a buffer system closely mimicking post mortem conditions. The effect of increasing concentrations of rC3, incubation temperature, as well as incubation time on the degradation of isolated myofibril proteins were all investigated in this study. Myofibril protein degradation was determined by SDS-PAGE and Western blotting. There was a visible increase in myofibril degradation with a decrease in proteins identified as desmin and troponin I and the detection of protein degradation products at approximately 32, 28 and 18 kDa with increasing concentrations of rC3. These degradation products were analysed using MALDI-TOF mass spectrometry and identified to occur from the proteolysis of actin, troponin T and myosin light chain, respectively. The production of these degradation products was not inhibited by 5 mM EDTA or semi-purified calpastatin but was inhibited by the caspase-specific inhibitor Ac-DEVD-CHO. The temperature at which isolated myofibrils were incubated with rC3 was also found to affect degradation, with increasing incubation temperatures causing increased desmin degradation and cleavage of pro-caspase 3 into its active isoform. Incubation of isolated myofibrils at 4°C for 5 days with rC3 resulted in the visible degradation of a number of myofibril proteins including desmin and troponin I. This study has shown that rC3 is capable of causing myofibril degradation, hydrolysing myofibril proteins under conditions that are similar to those found in muscle in the post mortem conditioning period.  相似文献   

4.
5.
6.
Ca2+-activated Z-disk-removing activity in the P0-40 crude muscle extracts described by Busch et al. (Busch, W. A., Stromer, M. H., Goll, D. E., and Suzuki, A. (1972), J. Cell Biol. 52, 367) was purified from porcine skeletal muscle extracts by using five column chromatographic procedures in succession: (1) 6% agarose; (2) DEAE-cellulose; (3) Sephadex G-200; (4) DEAE-cellulose with a very shallow gradient; (5) Sephadex G-150. All Z-disk-removing activity eluted in a single peak off each column. Z-disk-removing activity always coeluted with Ca2+-activated proteolytic activity, so Z-disk-removing activity in the P0-40 crude muscle extract is due to a single Ca2+-activated protease (CAF). The five column chromatographic procedures produced a 140-fold increase in specific activity of the Ca2+-activated proteolytic enzymic activity; because preparation of the P0-40 crude CAF fraction before chromatography produced a 127-fold increase in specific activity, the entire procedure described here produces a 17 800-fold increase in specific activity of CAF. This increase in specific activity suggests that muscle contains 3.4 mug of CAF per g of muscle fresh weight; this content is in reasonably good agreement with our yields of 0.25-0.76 mug of purified CAF per g of muscle. Purified CAF migrated as a single band during polyacrylamide gel electrophoresis in pH 7.5 Tris-HC1 buffer but migrated as two bands with molecular weights of 80 000 and 30 000 during polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Densitometric scans of sodium dodecyl sulfate-polyacrylamide gels show that the 80 000- and 30 000-dalton subunits make up 85 to 90% of the protein in purified CAF preparations and that these subunits are present in equimolar ratios.  相似文献   

7.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

8.
Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleo-cytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms.  相似文献   

9.
Summary Myofilaments of striated muscles can be recognized in the electron microscope to be in structural continuity with the outer membrane of the nuclear envelope. The very site of insertion of these myofilaments at the membrane surface frequently appears characterized by a dense basal knob of 85–135 Å. It is hypothesized that this attachment of myofilaments to the nuclear membrane plays a role in mechanically transmitting the contraction of the fiber to the nucleus, thus bringing about the harmonica-like folded appearance of the nucleus which is known for the contracted states of striated, smooth and cardiac muscles.The work was supported in part by the Deutsche Forschungsgemeinschaft.The author is indebted to Miss Sigrid Krien and Miss Marianne Winter for careful technical assistance as well as to Drs. Heinz Falk and U. Scheer for valuable discussions.  相似文献   

10.
Interaction of steroids with the nuclear envelope   总被引:2,自引:0,他引:2  
Three approaches have been taken to determine the molecular mechanism by which steroid hormones traverse the nuclear envelope on their way to the genome. The first approach involved characterization of steroid binding to nuclear envelope preparations. We have characterized androgen binding to nuclear envelopes isolated from the rat ventral prostate, the rat liver, and androgen-responsive and androgen-unresponsive cell lines of the Shionogi mouse mammary carcinoma and glucocorticoid binding to rat liver. Relatively high affinity binding sites for steroids have been identified on nuclear envelopes. Importantly, the number and specificity of the sites correlates with the responsiveness of the tissue to the steroid. In the second approach, we have undertaken to identify the steroid binding site directly. As the characteristics of the rat ventral prostate site resembled those of the nuclear androgen receptor, we have begun purifying that receptor and have found fast protein liquid chromatography to be very effective. By affinity labelling studies, the dexamethasone binding site on the rat liver nuclear envelope has been identified as a peptide of molecular weight of approximately 90,000. The third approach we have used is to identify androgen-dependent peptides in nuclear envelope preparations. In both the rat ventral prostate and an androgen-responsive cell line of the Shionogi mouse mammary carcinoma, we have identified abundant androgen-dependent peptides. The relationship of these peptides to the binding sites identified by the first two approaches and their role in steroid transport is being investigated.  相似文献   

11.
The molecular interactions responsible for nuclear envelope assembly after mitosis are not well understood. In this study, we demonstrate that a peptide consisting of the COOH-terminal domain of Xenopus lamin B3 (LB3T) prevents nuclear envelope assembly in Xenopus interphase extracts. Specifically, LB3T inhibits chromatin decondensation and blocks the formation of both the nuclear lamina-pore complex and nuclear membranes. Under these conditions, some vesicles bind to the peripheral regions of the chromatin. These "nonfusogenic" vesicles lack lamin B3 (LB3) and do not bind LB3T; however, "fusogenic" vesicles containing LB3 can bind LB3T, which blocks their association with chromatin and, subsequently, nuclear membrane assembly. LB3T also binds to chromatin in the absence of interphase extract, but only in the presence of purified LB3. Additionally, we show that LB3T inhibits normal lamin polymerization in vitro. These findings suggest that lamin polymerization is required for both chromatin decondensation and the binding of nuclear membrane precursors during the early stages of normal nuclear envelope assembly.  相似文献   

12.
A study was done to determine whether the Ca2+-activated muscle protease (CAF) that removes Z disks from myofibrils in the presence of Ca2+ is located in a sedimentable subcellular organelle. Porcine skeletal muscle cells were diced finely with a scalpel and were suspended in 0.25 M sucrose, 4 mM EDTA with a VIRTIS homogenizer. Filtration of the suspended muscle through four layers of cheesecloth removed most of the myofibrils and stromal protein. Nuclear (1,000 gavg for 15 min), mitochondrial-microsomal (50,000 gavg for 60 min), and supernatant fractions were assayed for succinic dehydrogenase, acid ribonuclease, cathepsin D, and CAF activities. Approximately 96% of total succinic dehydrogenase activity, 81% of cathepsin D activity, and 45% of acid ribonuclease activity, but only 14% of total CAF activity, were found in the nuclear and mitochondrial-microsomal fractions. Cathepsin D activity in the nuclear and mitochondrial-microsomal fractions was decreased if assays were done without prior treatment to rupture membranous structures; hence, our cell rupture and homogenization procedures preserved some intact lysosomal organelles. The results indicate that the small amount of CAF activity in the nuclear and mitochondrial-microsomal fractions was due to contamination by supernate and that CAF is not located in a membrane-bounded subcellular particle. Because CAF is active at the intracellular pH and temperature of living skeletal muscle cells and is in direct contact with the cytoplasm of muscle cells, its activity must be regulated by intracellular cellular Ca2+ concentration to prevent continuous and indiscriminate degradation of myofibrils.  相似文献   

13.
1. The mode of degradation of myofibrillar proteins and the structural changes in myofibrils due to the action of cathepsin B highly purified from rabbit skeletal muscle were studied. 2. Cathepsin B degraded myosin heavy chain, actin and troponin T, but not alpha-actinin, tropomyosin, troponin I or troponin C among myofibrillar proteins. 3. Cathepsin B optimally degraded myosin heavy chain, actin and troponin T at around pH 5. Degradation of myosin heavy chain produced 6 fragments, 180,000, 150,000, 87,000, 81,000, 75,000 and 69,000 Da, respectively. Actin was hydrolyzed into fragments of 41,000, 38,000 and 30,000 Da. Troponin T was degraded into fragments of 21,000, 12,000 and 10,000 Da. 4. Cathepsin B caused the fragmentation of myofibrils and disturbance of the lateral arrangement of myofibrils. 5. Cathepsin B partly disintegrated the Z-line and the M-line, and induced disordering of the arrangement of filaments in the I-band.  相似文献   

14.
As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.  相似文献   

15.
Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.  相似文献   

16.
The mechanism by which proteins accumulate in the cell nucleus is not yet known. Two alternative mechanisms are discussed here: (a) selective unidirectional entry of karyophilic proteins through the nuclear pores, and (b) free diffusion of all proteins through the nuclear pores and specific binding of nuclear proteins to nondiffusible components of the nucleoplasm. We present experiments designed to distinguish between these alternatives. After mechanical injury of the Xenopus oocyte nuclear envelope, nuclear proteins were detected in the cytoplasm by immunohistochemical methods. In a second approach, nuclei from X. borealis oocytes were isolated under oil, the nuclear envelopes were removed, and the pure nucleoplasm was injected into the vegetal pole of X. laevis oocytes. With immunohistochemical methods, it was found that each of five nuclear proteins rapidly diffuses out of the injected nucleoplasm into the surrounding cytoplasm. The subsequent transport and accumulation in the intact host nucleus could be shown for the nuclear protein N1 with the aid of a species-specific mAb that reacts only with X. borealis N1. Purified and iodinated nucleoplasmin was injected into the cytoplasm of Xenopus oocytes and its uptake into the nucleus was studied by biochemical methods.  相似文献   

17.
N-Ethylmaleimide-sensitive factor (NSF) is an ATPase involved in many membrane fusion events within the exocytic and endocytotic pathways. In the present study we showed that NSF is associated with the nuclear envelope. Golgi-associated NSF was released from membranes upon incubation with Mg(2+)-ATP, reflecting the disassembly of a complex consisting of NSF, soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). In contrast nuclear envelope-associated NSF in interphase cells was not released by the same treatment. During mitosis, however, it was released from nuclear membranes by Mg(2+)-ATP. These results suggest that the binding mode of nuclear membrane-associated NSF changes during the cell cycle.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号