首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptomyces subtilisin inhibitor, a dimeric protein proteinase inhibitor isolated in crystalline form by Murae et al. in 1972, contains three tyrosine and one tryptophan residues per monomer unit and has unusual fluorescence properties. When excited at 280 nm, it shows a characteristic fluorescence spectrum having a peak at 307 nm and a shoulder near 340 nm, a feature which has been recognized only for a very few cases in proteins containing both tryosine and tryptophan residues. When excited at 295 nm, at which tryrosine scarcely absorbs, the inhibitor shows an emission spectrum with a peak at 340 nm characteristic of a tryptophan residue. The emission with a peak at 307 nm is considered to arise from the tryrosine residues. The tryptophan quantum yield of Streptomyces subtilisin inhibitor excited at 295 nm is very small, indicating that the tryptophan florescence is strongly quenched in the native state of the inhibitor. Below pH 4 the peak of the fluorescence spectrum of the inhibitor excited at 280 nm shifts toward 340-350 nm with a concomitant increase in the quantum yield. The structural change induced by low pH seems to release the tryptophan fluorescence from the quenching.  相似文献   

2.
The 3-phosphoglycerate kinase (EC 2.7.2.3) of yeast which contains two tryptophyl and eight tyrosyl residues per molecule, displayed an unusualy fluorescence emission spectrum with a maximum at 308 nm when excited at 280 nm. The emission peak shifted to 329 nm when excited at 295 nm. We could confirm that it was due to the efficient quenching of tryptophyl fluorescence as well as to the incomplete energy transfer from tyrosyl to tryptophyl residues. The average fluorescence quantum yield of this protein was 0.076 (excitation at 280 nm) and that of tryptophyl residues was 0.046 (excitation at 295 nm). As the pH of the solution was lowered, the fluorescence intensity of phosphoglycerate kinase at 329 nm dramatically increased between pH 5 and 4, while the position of the peak remained unchanged. When denatured in 4 M guanidine hydrochloride, the protein showed two emission peaks, one at 343 nm and the other at 303 nm.  相似文献   

3.
白茯苓凝集素的荧光光谱研究   总被引:3,自引:0,他引:3  
白茯苓凝集素(SLL)分子中含有4个色氨酸(Trp)残基,NBS修饰测得这4个Trp残基位于分子表面。SLL在天然状态下荧光发射峰位于335nm处,离子强度和温度对其荧光光谱均无明显的影响。NBS修饰后的SLL失去凝血活性,相应荧光光谱的强度减弱,荧光发射峰发生蓝移,提示SLL的构象发生改变。用KI·CsCl和丙烯酰胺淬灭剂研究SLL分子中Trp残基的微环境,发现丙烯酰胺和CsCl能淬灭分子中100%和50%的Trp残基的荧光,而KI完全不能淬灭SLL分子中Trp残基的荧光,因此Trp残基周围存在阴离子区,或者Trp残基处于分子表面的疏水环境中。  相似文献   

4.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

5.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

6.
Fluorescence spectra of native pennisetin resulted in a single emission peak at 335 nm at excitation wavelength of 274 and 295 nm with quantum yield values for tyrosine and tryptophan as 0.086 and 0.097, respectively. These results indicate the presence of tryptophan residues in a polar environment and quenching of tyrosine residues in the native state of pennisetin. In the presence of an increasing concentration of guanidine hydrochloride (Gdn · HCl), changes such as red shift in emission peak from 335 to 344 nm, decrease in relative fluorescence intensity and increase in quantum yield value were observed, suggesting unfolding of the pennisetin molecule during denaturation. The quenching of tryptophanyl fluorescence by acrylamide and iodide further showed the presence of a single kind of tryptophanyl residue and its polar environment in pennisetin molecule.  相似文献   

7.
The secondary and tertiary structure of the oligomeric arginase (EC 3.5.3.1) from beef liver was investigated by circular dichroism (CD) and fluorescence measurements. The far-ultraviolet CD spectrum of the enzyme at neutral pH is indicative of high helical content. The intrinsic fluorescence emission of the protein is due to tryptophan, the contribution of tyrosine being small. Upon excitation at 295 nm, the maximum of emission occurs at 330 nm, implying that the tryptophan residues are rather buried in a hydrophobic interior of the protein. Ethylenediaminetetraacetic acid (EDTA), which inactivates the enzyme by removing the functional Mn2+-ion from the enzyme, does not dissociate the enzyme into subunits, nor affect noticeably its secondary and tertiary structure. Inactivation occurs in the acid pH range, being complete at pH below 4. However, acidification up to pH 1.5 produced only limited changes in the far-ultra-violet CD spectrum and intrinsic fluorescence emission properties. The enzyme shows noteworthy thermal stability, as shown by measuring the residual activity after heating and by evaluating the temperature dependence of the CD signal at 220 nm and the intensity of emission fluorescence. A temperature of half inactivation (Tm) of 77 degrees was determined upon heating the enzyme at pH 7.5 in the presence of Mn2+-ions for 10 min; in the presence of EDTA, Tm is shifted to 55 degrees. Taken together, these observations indicate that the structural stability of beef liver arginase arises from a clustering of hydrophobic amino acids and from Mn2+-ion binding.  相似文献   

8.
Exonuclease from Crotalus adamanteus venom has only threonine as N-terminimal amono acid residue. It was examined for its amino acid composition, -SH and S-S groups. It has no free -SH groups and seven S-S bonds. The analysis of the carbohydrate residues in the enzyme proves that it is a glycoprotein. It contains neutral sugars (9.2%), amino sugars (1.9%) and ten sialic acid residues per molecule. The venom exonuclease is a metalloenzyme. This is proven by the existence of Mg2+, Zn2+ and Ca2+ and their specific role in the catalytic reactions. The enzyme contains also triacylglycerols (1.54%) and cholesterol esters (1.43%). The influence of the non-protein moieties of the exonuclease on its catalytic ability has been discussed.  相似文献   

9.
J Ellis  I A Murray  W V Shaw 《Biochemistry》1991,30(44):10799-10805
Replacement by tyrosine or phenylalanine was used to assign the additive contributions of each of the three tryptophan residues of chloramphenicol acetyltransferase (CAT) to its intrinsic fluorescence on excitation at 295 nm. During the assessment of the fluorescence responses of the wild-type enzyme to the binding of ligands, it was found that the overlapping absorption spectra of chloramphenicol and tryptophan, with an attendant inner filter effect, required the use of a displacement technique involving an alternative substrate (the p-cyano analogue of chloramphenicol) without significant absorption at 295 nm. By the use of two-Trp, one-Trp, and Trp-less variants, in combination with this displacement technique, it was possible to demonstrate that Trp-86 and Trp-152 are involved in the fluorescence quenching associated with the binding of chloramphenicol, most likely via nonradiative energy transfer from these residues to the bound substrate. Trp-152 is mainly responsible for the fluorescence enhancement accompanying the binding of acetyl-CoA (and CoA) through proximity effects and solvent exclusion on substrate association.  相似文献   

10.
The fluorescence properties of proteinase K are described and related to the X-ray model refined at 1.48 A resolution. Upon excitation of proteinase K at 295 nm the fluorescence is determined by the two tryptophan residues, Trp-8 and Trp-212. The tryptophans are partly buried just below the surface of the molecule. Neither Trp is in a highly hydrophobic environment, suggesting that this cannot be the explanation for the fluorescence at 330 nm: formation of exiplexes with adjacent peptide bonds would seem to be the more likely cause. Trp-8 is located in a 'cavity', close to an internal cluster of water molecules. The contribution of Trp-8 to the total indole emission is 60% and that of Trp-212 is 40%. The tryptophan fluorescence quantum yield is constant in the pH range 3-9. The fluorescence spectrum resulting from the simultaneous excitation of the tyrosyl and tryptophyl residues at 280 nm is dominated by the indole fluorophores: 61% of the light absorbed by the tyrosyl side chains is transferred to the two indole rings. Iodide and caesium are not efficient quenchers of the proteinase K tryptophan fluorescence, which is explained by restricted access of the ions to the somewhat buried Trp side chains and by electrostatic repulsion of caesium ions. Acrylamide quenching proceeds via both a dynamic and a static process and the data show homogeneity of the indole fluorescence arising from fluorophores in similar environments. The activation energy for the thermal deactivation of the excited tryptophans is 54 kJ mol-1. This value is substantially higher than those found for other proteinases from microorganisms and arises from the thermostability of proteinase K. Photooxidation of proteinase K in the presence of proflavine follows the kinetics of a first order reaction. The two tryptophans differ in their photoreactivity, Trp-212 being considerably more reactive.  相似文献   

11.
发现CBZ-Lys·pNP能有效地被菓菠萝蛋白酶(Fruit Bromelain E.C.3.4.22.5)作用,测得Km为4.167×10~(-4)mol/L,k_(cat)为742min~(-1)。以荧光和紫外差示光谱为监测手段,对酶分子构象变化进行研究。酶的荧光强度随胍浓度增大而逐渐下降,4mol/L胍变性时,发射峰自332nm红移到353nm,并在310nm处出现新的发射峰。酶的荧光强度都因SDS存在而下降,SDS浓度大于3.47mmol/L有所回升,并出现红移,同时在315nm处出现新的发射肩;紫外差示光谱显示在236nm有一个较显著的员峰,此峰与β-螺旋结构变化有关,278、286和295nm出现三个负峰,260nm有较小正峰,说明酶分子中Tyr、Trp和Phe的微环境发生了明显的变化。测定酶在不同浓度胍和SDS中的变性和失活速度常数,对酶构象变化及催化活力的关系作了比较研究,酶的失活速度均大于变性速度。  相似文献   

12.
The effect of ethanol on the activity of Penaeus penicillatus acid phosphatase has been studied. The results show that ethanol significantly inhibits enzyme activity as a non-competitive inhibitor, with Ki 8.75%. The conformational changes of the enzyme molecule induced by ethanol were followed using fluorescence emission, ultraviolet difference and circular dichroism (CD) spectra. Increasing the ethanol concentration caused the fluorescence emission intensity of the enzyme to increase. The ultraviolet difference spectra of the enzyme denatured with ethanol had two negative peaks at 220 and 278 nm, and a positive peak at 240 nm. Increasing the ethanol concentration produced a small shoulder peak at 287 nm in addition to the increases in the negative magnitudes of the 220 and 278 nm peaks. The changes of the fluorescence and ultraviolet difference spectra reflected the changes of the microenvironments of the tryptophan and tyrosine residues of the enzyme. The CD spectrum changes of the enzyme show that the secondary structure of the enzyme also changed. The results suggest that ethanol is a non-competitive inhibitor and the conformational integrity of the enzyme is essential for its activity.  相似文献   

13.
EcoRI DNA methyltransferase contains tryptophans at positions 183 and 225. Tryptophan 225 is adjacent to residues previously implicated in S-adenosylmethionine (AdoMet) binding and to cysteine 223, previously shown to be the site of N-ethyl maleimide-mediated inactivation of the enzyme (Reich, N. O., and Everett, E. (1990) J. Biol. Chem. 265, 8929-8934; Everett, E. A., Falick, A. M., and Reich, N. O. (1990) J. Biol. Chem. 265, 17713-17719). The fluorescence spectra of the wild-type enzyme is centered at 338 nm indicating partial tryptophan solvent accessibility. Substitution of tryptophan 183 with phenylalanine results in a 45% drop in fluorescence intensity, but no shift in lambda max. DNA binding to the wild-type methyltransferase caused an increase in the fluorescence intensity, while binding to the tryptophan 183 mutant had a quenching effect, suggesting that DNA binding induces a conformational change near both tryptophans. Binding of AdoMet and various AdoMet analogs to the wild-type methyltransferase results in no change in the fluorescence spectrum when excitation occurs at 295 nm, suggesting that no conformational change occurs, and AdoMet does not interact with either tryptophan. In contrast, quenching was observed when excitation occurred at 280 nm, suggesting that AdoMet and its analogs may be quenching tyrosine to tryptophan energy transfer. Protein-ligand complexes were titrated with acrylamide, and the data also implicate conformational changes upon DNA binding but not upon AdoMet binding, consistent with previous limited proteolysis results (Reich, N. O., Maegley, K. A., Shoemaker, D.D., and Everett, E. (1991) Biochemistry 30, 2940-2946).  相似文献   

14.
The interaction of riboflavin with a protein isolated from egg white has been studied spectrofluorimetrically at different pH values. In 0.1 M phosphate buffer pH 7.0; 1:1 complex formation occurs with the association constant Ka = 7.7-10(7) M-1. In the presence of 0.033% sodium dodecyl sulphate, the complex dissociated with a rate constant of 4-10(-2) sec-1 at 29 degrees C. The binding was sensitive to pH and to the antibodies produced against the protein. On lowering the pH from 7 to 4 the binding affinity decreased approximately 100-fold and below pH 4, the binding could not be detected at all. These data, together with those obtained by measuring the fluorescence intensities of riboflavin in presence of N-bromosuccinimide oxidized- and disulphide reduced apoprotein, suggest that carboxyl functions, 1-2 tryptophan residues and 2-3 disulphide bridges are essential for binding. The emission spectra of the protein under different conditions upon excitation at 280 and 295 nm were analyzed to calculate the quantum yield (Q) and the efficiency of energy transfer (e) from tyrosine to tryptophan residues. From these data it was concluded that the energy transfer did not occur with equal efficiency under all conditions and that the tryptophan residues responsible for the riboflavin binding are more accessible to N-bromosuccinimide oxidation than others.  相似文献   

15.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   

16.
The emission maximum of DPN-linked isocitrate dehydrogenase in pH 7.07 buffer is shifted from 317 to 324 nm and fluorescence intensity is decreased when the excitation wave-length is varied from 270 to 290 nm; in 0.2 M KOH, where the fluorescence of tyrosyl residues is almost completely quenched, a further substantial decline in quantum yield of protein fluorescence and a red shift of the emission peak to 339 nm occur. The latter should be due mainly to tryptophyl residues. The enzyme contains 9.4 tyrosyl residues per subunit of molecular weight 42,000 determined spectrophotometrically (295 nm) at pH 13, in good agreement with a tyrosine content of 9.7 by amino acid analysis. No more than 1.1 tyrosyl residues per subunit can be detected up to pH 10.6 at 7 degrees upon prolonged incubation. The increase in absorption at 295 nm with increasing pH is related to loss of enzyme activity and results in a red shift of the emission maximum, and decreased fluorescence intensity. Treatment of the enzyme in a Li+-containing buffer at pH 7.5 with an excess of N-acetylimidazole results in (a) modification of 1.1 tyrosyl residues per subunit, (b) a 30% decrease in enzyme activity, (c) a 6-nm red shift in emission maximum, and (d) a decrease in fluorescence intensity. Manganous DL-isocitrate (1.06 mM) prevents the acetylation of the enzyme. Deacetylation of the O-acetylated enzyme by hydroxylamine completely restores the enzyme activity and reverses the spectral changes. The acetylation studies indicate that the reactive tyrosyl residue does not participate directly in catalysis but may be involved in maintaining the proper conformation of the active enzyme center. A net of 1 of the 2 tryptophyl residues per subunit is perturbed immediately by a number of solvents. This perturbation is not affected by manganous isocitrate, whereas exposure of tyrosyl residues occurs only with time and is prevented by the substrate. The perturbation of the tryptophyl residue is accompanied by a red shift of the fluorescence emission maximum. The more exposed tryptophyl residue may contribute to the energy transfer from protein to nucleotides since the quenching of protein fluorescence upon binding of DPN+, DPNH, or ADP by enzyme results in a blue shift of the emission maximum. Manganous DL-isocitrate (1.06 mM) quenches protein fluorescence by 16% without a shift in emission peak and does not affect the relative extent of fluorescence quenching induced by the nucleotides.  相似文献   

17.
The uncoupling protein from brown adipose tissue is a member of the family of metabolite carriers of the mitochondrial inner membrane. It contains two tryptophan residues which have been characterized by fluorescence spectroscopy. Application of fluorescence-quenching-resolved spectroscopy (FQRS) allowed the determination of the emission maximum for each residue, both of which occur at 332 nm, thus suggesting that they are both located in a non-polar environment. Fluorescence quenching has demonstrated that both residues are accessible to acrylamide and inaccessible to Cs+, while only one of them is accessible to I-. When FQRS is combined with guanidinium hydrochloride denaturation, the unfolding of the regions containing each tryptophan can be monitored separately as they are transferred to the polar medium where the emission maximum appears at 359 nm, revealing also that the iodide-accessible residue is more sensitive to the denaturant. Secondary structure predictions, together with the data presented here, suggest that the iodide-accessible residue could correspond to Trp173 and the denaturant-resistant iodide-inaccessible one to Trp280, located in the center of the sixth transmembrane alpha-helix. Interaction of the protein with GDP (a transport inhibitor) has been studied and has revealed that it partially shields Trp173 from the interaction with I-, as well as reducing the static component of the acrylamide quenching.  相似文献   

18.
Fluorescence of human liver alanine aminopeptidase has been attributed to tryptophan fluorescence. The fluorescence maximum is at 330 nm, 20 nm lower than that for free tryptophan, suggesting that most of the enzyme tryptophans are in a nonpolar environment and are shielded from solvent. Quenching of enzyme fluorescence by iodide, pyridine, and N-methyl nicotinamide also demonstrates that enzyme tryptophan residues are largely buried and inaccessible to solvent. Those accessible are in negatively charged environments. 8-(1'-dimethylaminonaphthalene-5'-sulfonylamido-octanoic acid (8-DNS-octanoic acid) and epsilon-DNS-L-Lys inhibit aminopeptidase. One molecule of inhibitor when bound to the enzyme quenched 57% and 63% of enzyme fluorescence, respectively. Such efficient quenching may indicate a degree of segregation of tryptophan toward the active center.  相似文献   

19.
Detection of Tryptophan to Tryptophan Energy Transfer in Proteins   总被引:4,自引:0,他引:4  
Förster resonance energy transfer (FRET) studies usually involve observation of intensity or life-time changes in the donor or acceptor molecule and usually these donor and acceptor molecules differ (heterotransfer). The use of polarization to monitor FRET is far less common, although it was one of the first methods utilized. In 1960, Weber demonstrated that homotransfer between tryptophan molecules contributes to depolarization. He also discovered that the efficiency of homotransfer becomes much less effective upon excitation near the red-edge of the absorption. This “red-edge effect” was shown to be a general phenomenon of homotransfer. We have utilized Weber's red-edge effect to study tryptophan homotransfer in proteins. Specifically, we determined the polarization of the tryptophan fluorescence upon excitation at 295 nm and 310 nm (near the red-edge). Rotational diffusion leads to depolarization of the emission excited at either 295 nm or 310 nm, but homotransfer only contributes to depolarization upon excitation at 295 nm. Hence, the 310/295 polarization ratio gives an indication of tryptophan to tryptophan energy transfer. In single tryptophan systems, the 310/295 ratios are generally below 2 whereas in multi-tryptophan systems, the 310/295 ratios can be greater than 3.  相似文献   

20.
1. Fluorimetric techniques were used to characterize the environment of tryptophan residues in thermolysin and apo-thermolysin. The apo-thermolysin was obtained by dissolving the enzyme in the presence of 10mm-EDTA, which removed the functional Zn(2+) ion and the four Ca(2+) ions/molecule from the enzyme. 2. At 25 degrees C in aqueous solution the fluorescence-emission spectrum of the native holoenzyme, on excitation at 290nm, was essentially characteristic of tryptophan, with an emission maximum at 333nm. The emission maximum of the apoenzyme is red-shifted to 338nm and the relative intensity of fluorescence is decreased by 10%, both effects indicating some unfolding of the protein molecule, with the indole groups being transferred to a more hydrophilic environment. 3. Fluorescence quenching studies using KI, N'-methylnicotinamide hydrochloride and acrylamide indicated a more open structure in the apoenzyme, with the tryptophan residues located in a negatively charged environment. 4. The thermal properties of the apoenzyme, as monitored by fluorescence-emission measurements, are dramatically changed with respect to the native holoenzyme. In fact, whereas the native enzyme is heat-stable up to about 80 degrees C, for the apoenzyme a thermal transition is observed near 48 degrees C. The apoenzyme is also unstable to the action of unfolding agents such as urea and guanidinium chloride, much as for other globular proteins from mesophilic organisms. 5. The functional Zn(2+) ion does not contribute noticeably to the stability of thermolysin. 6. It is concluded that a major role in the structural stability of thermolysin is played by the Ca(2+) ions, which have a bridging function within this disulphide-free protein molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号