首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we evaluated the effects of human immunodeficiency virus type 1 (HIV-1) and its gp120 protein on interleukin-10 (IL-10) expression in cultured human monocytes/macrophages. Infection of either 1-day monocytes or 7-day monocyte-derived macrophages with HIV-1 strain Ba-L resulted in clear-cut accumulation of IL-10 mRNA at 4 and 24 h. Likewise, treatment of these cells with recombinant gp120 induced IL-10 mRNA expression and caused a marked increase in IL-10 secretion. Monoclonal antibodies to gp120 strongly inhibited recombinant gp120-induced IL-10 secretion by monocytes/macrophages. Moreover, the addition of IL-10 to monocytes/macrophages resulted in a significant inhibition of HIV-1 replication 7 and 14 days after infection. On the whole, these results indicate that HIV-1 (possibly through its gp120 protein) up-regulates IL-10 expression in monocytes/macrophages. We suggest that in vivo production of IL-10 by HIV-primed monocytes/macrophages can play an important role in the early response to HIV-1 infection.  相似文献   

2.
We studied the effects of the gp120 glycoprotein of human immunodeficiency virus type 1 on the expression of interleukin-12 (IL-12) in human monocytes and in monocyte-derived macrophages. Induction of the mRNA for both the p35 and p40 subunits of IL-12 was observed in both cell types after gp120 treatment. We then evaluated cytokine secretion by using an enzyme-linked immunosorbent assay which recognizes only the IL-12 heterodimer. No IL-12 was detected in monocytes/macrophages treated with gp120 alone. A consistent IL-12 secretion was found in macrophages primed with gamma interferon (IFN-gamma) and subsequently treated with gp120. Low levels of IL-12 were occasionally observed in IFN-gamma-primed monocytes stimulated with gp120. The greater response of macrophages than of monocytes to the priming effect of IFN-gamma was consistent with the finding that IFN-gamma induced a much stronger antiviral state to vesicular stomatitis virus in macrophages than in monocytes. These data indicate that gp120 is an inducer of IL-12 expression in monocytes/macrophages and that IFN-gamma is an essential cofactor for IL-12 secretion, especially in differentiated macrophages.  相似文献   

3.
Kanda T  Steele R  Ray R  Ray RB 《Journal of virology》2007,81(22):12375-12381
Beta interferon (IFN-beta) expression is triggered by double-stranded RNA, a common intermediate in the replication of many viruses including hepatitis C virus (HCV). The recent development of cell culture-grown HCV allowed us to analyze the IFN signaling pathway following virus infection. In this study, we have examined the IFN-beta signaling pathway following infection of immortalized human hepatocytes (IHH) with HCV genotype 1a (clone H77) or 2a (clone JFH1). We observed that IHH possesses a functional Toll-like receptor 3 pathway. HCV infection in IHH enhanced IFN-beta and IFN-stimulated gene 56 (ISG56) promoter activities; however, poly(I-C)-induced IFN-beta and ISG56 expression levels were modestly inhibited upon HCV infection. IHH infected with HCV (genotype 1a or 2a) exhibited various levels of translocation of IRF-3 into the nucleus. The upregulation of endogenous IFN-beta and 2',5'-oligoadenylate synthetase 1 mRNA expression was also observed in HCV-infected IHH. Subsequent studies suggested that HCV infection in IHH enhanced STAT1 and ISG56 protein expression. A functional antiviral response of HCV-infected IHH was observed by the growth-inhibitory role in vesicular stomatitis virus. Together, our results suggested that HCV infection in IHH induces the IFN signaling pathway, which corroborates observations from natural HCV infection in humans.  相似文献   

4.
The role of carbohydrates in the immunogenicity of human immunodeficiency virus type 1 (HIV-1) glycoproteins (gp160 and gp120) remains poorly understood. We have analyzed the specificity and neutralizing capacity of antibodies raised against native gp160 or against gp160 deglycosylated by either endo F-N glycanase, neuraminidase, or alpha-mannosidase. Rabbits immunized with these immunogens produced antibodies that recognized recombinant gp160 (rgp160) from HIV-1 in a radioimmunoassay and in an enzyme-linked immunosorbent assay. Antibodies elicited by the different forms of deglycosylated gp160 were analyzed for their reactivity against a panel of synthetic peptides. Compared with anti-native gp160 antisera, serum reactivity to most peptides remained unchanged, or it could increase (peptide P41) or decrease. Only antibodies raised against mannosidase-treated gp160 failed to react with a synthetic peptide (peptide P29) within the V3 loop of gp120. Rabbits immunized with desialylated rgp160 generated antibodies which recognized not only rgp160 from HIV-1 but also rgp140 from HIV-2 at high titers. Although all antisera produced against glycosylated or deglycosylated rgp160 could prevent HIV-1 binding to CD4-positive cells in vitro, only antibodies raised against native or desialylated gp160 neutralized HIV-1 infectivity and inhibited syncytium formation between HIV-1-infected cells and noninfected CD4-positive cells, whereas antibodies raised against alpha-mannosidase-treated gp160 inhibited neither virus replication nor syncytium formation. These findings indicate that the carbohydrate moieties of gp160 can modulate the specificity and the protective efficiency of the antibody response to the molecule.  相似文献   

5.
Global human immunodeficiency virus type 1 (HIV-1) diversity may require engineering vaccines to express antigens representing strains prevalent in the target population of vaccine testing. The majority (90%) of incident infections in Thailand are genetic subtype E, with a small percentage of subtype B infections in the intravenous drug user populations. We have evaluated and compared the binding and HIV-1 neutralizing properties of serum antibodies induced in baboons by CHO cell-expressed monomeric gp120 derived from a CCR5-using (R5) subtype E primary HIV-1CM235 or a CXCR4-using (X4) subtype B T-cell line-adapted (TCLA) HIV-1SF2 isolate. In contrast to the subtype-specific HIV-1 neutralizing antibodies induced with recombinant HIV-1SF2 gp120 (rgp120SF2), rgp120CM235 immunization induced antibodies capable of neutralizing both subtype E and subtype B TCLA HIV-1 isolates. However, neither immunogen induced antibodies capable of neutralizing primary HIV-1 isolates. Antibody induced by rgp120CM235 preferentially bound natively folded gp120 and retained strong cross-reactivity against multiple gp120 strains within subtype E as well as subtype B. In contrast, antibody responses to rgp120SF2 were directed predominantly to linear epitopes poorly exposed on native gp120 and had more limited cross-recognition of divergent gp120. Fine epitope mapping revealed differences in antibody specificities. While both rgp120CM235 and rgp120SF2 induced antibodies to regions within C1, V1/V2, V3, and C5, unique responses were induced by rgp120CM235 to multiple epitopes within C2 and by rgp120SF2 to multiple epitopes within C3, V4, and C4. These data demonstrate that strain and/or phenotypic differences of HIV-1 subunit gp120 immunogens can substantially alter antibody binding specificities and subsequent HIV-1 neutralizing capacity.  相似文献   

6.
The mechanism of the antiviral activity of sulfated polysaccharides on human immunodeficiency virus type 1 (HIV-1) was investigated by determining the effect of dextran sulfate on the binding of CD4 and several anti-gp120 monoclonal antibodies to both recombinant and cell surface gp120. Dextran sulfate did not interfere with the binding of sCD4 to rgp120 on enzyme-linked immunosorbent assay (ELISA) plates or in solution and did not block sCD4 binding to HIV-1-infected cells expressing gp120 on the cell surface. Dextran sulfate had minimal effects on rgp120 binding to CD4+ cells at concentrations which effectively prevent HIV replication. In contrast, it potently inhibited the binding of both rgp120 and cell surface gp120 to several monoclonal antibodies directed against the principal neutralizing domain of gp120 (V3). In an ELISA format, dextran sulfate enhanced the binding of monoclonal antibodies against amino-terminal regions of gp120 and had no effect on antibodies directed to other regions of gp120, including the carboxy terminus. The inhibitory effects of polyanionic polysaccharides on viral binding, viral replication, and formation of syncytia therefore appear mediated by interactions with positively charged amino acids concentrated in the V3 region. This high local positive charge density, unique to the V3 loop, leads us to propose that this property is critical to the function of the V3 region in mediating envelope binding and subsequent fusion between viral and cell membranes. The specific interaction of dextran sulfate with this domain suggests that structurally related molecules on the cell surface, such as heparan sulfate, may be additional targets for HIV binding and infection.  相似文献   

7.
8.
One strategy for the generation of broadly reactive neutralizing antibodies (NA) against human immunodeficiency virus type 1 (HIV-1) primary isolates is to use immunogens that have constrained HIV-1 envelope gp120 conformations reflective of triggered envelope on the surface of virions. A major change in gp120 following binding to CD4 is the enhanced exposure of the CCR5 binding site. One inducer of CCR5 binding site epitopes on gp120 is the human anti-gp120 monoclonal antibody, A32. We have made cross-linked A32-rgp120(89.6) and A32-rgp120(BaL) complexes and have compared their immunogenicities to those of uncomplexed recombinant gp120(BaL) (rgp120(BaL)) and rgp120(89.6). A32-rgp120(89.6) and A32-rgp120(BaL) complexes had stable induced CCR5 binding site expression compared to that of uncomplexed rgp120s. However, the A32-rgp120 complexes had similar capacities in guinea pigs for induction of NA against HIV-1 primary isolates versus that of rgp120 alone. A32-rgp120(89.6) induced antibodies that neutralized 6 out of 11 HIV-1 isolates, while rgp120(89.6) alone induced antibodies that neutralized 4 out of 11 HIV-1 isolates. A32-rgp120(BaL) complexes induced antibodies that neutralized 4 out of 14 HIV-1 isolates while, surprisingly, non-cross-linked rgp120(BaL) induced antibodies that neutralized 9 out of 14 (64%) HIV-1 isolates. Thus, stable enhanced expression of the coreceptor binding site on constrained gp120 is not sufficient for inducing broadly neutralizing anti-HIV-1 NA. Moreover, the ability of HIV-1 rgp120(BaL) to induce antibodies that neutralized approximately 60% of subtype B HIV-1 isolates warrants consideration of using HIV-1 BaL as a starting point for immunogen design for subtype B HIV-1 experimental immunogens.  相似文献   

9.
Recombinant viral vectors are useful tools for AIDS vaccine development. However, expression of HIV-1 envelope genes using viral vectors has not been successful in the induction of potent neutralizing antibodies in vivo. We took advantage of the strong immunogenicity of vesicular stomatitis virus (VSV)-based vector and expressed HIV-1 HXB2 gp120 gene in the recombinant VSV. Our results showed that HIV-1 gp120 protein expressed by the recombinant VSV retained the native conformation of the protein to some degree and was recognized by two well-characterized broad anti-HIV-1 neutralizing monoclonal antibodies b12, 2G12. We further showed that only one time intranasal immunization with the recombinant VSV led to production of anti-HIV-1 anti-sera in mice. In addition, we found that the anti-sera had the ability to neutralize not only HXB2 envelope-pseudotyped HIV-1 viruses but also HIV-1 pseudotyped viruses with JRFL envelopes. These results suggest that HIV-1 gp120 expressed by the recombinant VSV, in combination with the route of intranasal administration, is an effective strategy to evaluate the immunogenicity of HIV-1 envelope protein and its variants in mice.  相似文献   

10.
Binding of recombinant HIV coat protein gp120 to human monocytes   总被引:2,自引:0,他引:2  
Inasmuch as the exact level of CD4 Ag expression on macrophages is controversial and because HIV may interact with macrophages in a manner different from that on T cells, we analyzed the binding of gp120 to freshly isolated and cultured monocytes. rgp120 was iodinated using the lactoperoxidase method to a sp. act. of 600 Ci/mmol. Highly purified monocytes (greater than 90%) were isolated from the leukapheresed blood of normal volunteers by Ficoll-Hypaque sedimentation followed by countercurrent centrifugal elutriation and cultured 7 days in DMEM supplemented with 1000 U/ml macrophage CSF in 10% human serum. Whereas MOLT/4 cells consistently bound freshly prepared 125I-rgp120 at 80% specificity with 5100 +/- 700 mol/cell, MCSF cultured monocytes bound rgp120 at only 0 to 20% specificity and 420 +/- 200 mol/cell. Most of the radioactivity bound by these cells could not be blocked by the addition of unlabeled rgp120. In contrast, the U937 myeloid cell line bound rgp120 with 50% specificity and about 2500 mol/cell. Whereas the antibody OKT4a (anti-CD4) blocked 80% of the binding on MOLT/4 cells and 50% on U937 cells, binding was only inhibited on the average of 6% on cultured monocytes. When soluble rCD4 was used as an inhibitor, binding to MOLT/4 cells was blocked by 80%. In contrast, binding to cultured monocytes was inhibited by 28%. HIV infectivity was blocked by similar concentrations of OKT4a. These observations suggest that although most binding of gp120 to cultured monocytes is not to the CD4 determinant, several hundred molecules do bind to a CD4-like molecule which promotes virus entry and replication.  相似文献   

11.
Seven diverse primary isolates of human immunodeficiency virus type 1 (HIV-1) were examined and found to be refractory to neutralization by antisera to recombinant gp120 (rgp120) protein from HIV-1 MN. This stands in marked contrast to the sensitivity exhibited by certain laboratory-adapted viruses. To understand the difference between primary and laboratory-adapted viruses, we adapted the primary virus ACH 168.10 to growth in the FDA/H9 cell line. ACH 168.10 was chosen because the V3 region of gp120 closely matches that of MN. After 4 weeks, infection became evident. The virus (168A) replicated in FDA/H9 cells with extensive cytopathic effect but was unchanged in sensitivity to antibody-mediated neutralization. Thus, growth in cell lines is not sufficient to render primary virus sensitive to neutralization. The 168A virus was, however, partially sensitive to CD4 immunoadhesin (CD4-Ig). Adaptation was continued to produce a persistently infected FDA/H9 culture that displayed minimal cytopathic effect. The virus (168C) was now sensitive to neutralization by MN rgp120 vaccine sera and by MN-specific monoclonal antibodies and showed increased sensitivity to HIVIG and CD4-Ig. 168C encoded three amino acid changes in gp120, including one within the V3 loop (I-166-->R, I-282-->N, G-318-->R). MN-specific monoclonal antibodies bound equally to the surface of cells infected with either neutralization-resistant or -sensitive virus. The coincidence of changes in neutralization sensitivity with changes in cell tropism and cytopathic effect suggests a common underlying mechanism(s) acting through the whole of the envelope protein complex.  相似文献   

12.
The allele Mx regulates the extent to which interferon alpha/beta inhibits the growth of influenza viruses in mouse cells such as peritoneal macrophages. The time course of induction of the antiviral state against an influenza A virus is comparable in macrophages with and without Mx and is similar to that found with vesicular stomatitis virus. In contrast, the decay of the antiviral state against influenza virus is markedly slower in Mx-positive cells and slower than that against vesicular stomatitis virus observed in either Mx-positive or Mx-negative cells. Thus, after removal of interferon alpha/beta, Mx-positive cells remain protected against influenza virus at times when they have lost protection against vesicular stomatitis virus. These results suggest that interferon alpha/beta treatment activates different antiviral mechanisms, each acting against distinct groups of viruses and each independently controlled by host genes.  相似文献   

13.
Injection of conventional or axenic weanling mice with potent sheep or goat antibody to mouse interferon alpha/beta resulted in a decrease in the basal level of 2-5A synthetase in resting peritoneal macrophages and rendered these cells permissive for vesicular stomatitis virus. There was a good inverse correlation between the level of 2-5A synthetase in peritoneal macrophages and the permissivity of these cells for vesicular stomatitis virus. The peritoneal macrophages of 1- and 2-week-old mice had low levels of 2-5A synthetase and were permissive for vesicular stomatitis virus, whereas at 3 weeks (and after) there was a marked increase in the level of 2-5A synthetase in peritoneal macrophages, and these cells were no longer permissive for vesicular stomatitis virus. We suggest that low levels of interferon alpha or beta or both are produced in normal mice, and that this interferon contributes to host defense by inducing and maintaining an antiviral state in some cells.  相似文献   

14.
The protection of individuals from human immunodeficiency virus type 1 (HIV-1) infection with an envelope subunit derived from a single isolate will require the presentation of conserved epitopes in gp120. The objective of the studies presented here was to test whether a native recombinant gp120 (rgp120) immunogen would elicit responses to conserved neutralization epitopes that are not present in a denatured recombinant gp120 antigen from the same virus isolate. In a large study of 51 baboons, we have generated heterologous neutralizing activity with native, glycosylated rgp120SF2 but not with denatured, nonglycosylated env 2-3SF2. After repeated exposure to rgp120SF2 formulated with one of several adjuvants, virus isolates from the United States, the Caribbean, and Africa were neutralized. The timing of the immunization regimen and the choice of adjuvant affected the virus neutralization titers both quantitatively and qualitatively. These results suggest that vaccination with native, glycosylated rgp120 from a single virus isolate, HIV-SF2, may elicit a protective immune response effective against geographically and sequentially distinct HIV-1 isolates.  相似文献   

15.
16.
17.
The interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and the CD4 receptor is highly specific and involves relatively small contact surfaces on both proteins according to crystal structure analysis. This molecularly conserved interaction presents an excellent opportunity for antiviral targeting. Here we report a group of pentavalent antimony-containing small molecule compounds, NSC 13778 (molecular weight, 319) and its analogs, which exert a potent anti-HIV activity. These compounds block the entry of X4-, R5-, and X4/R5-tropic HIV-1 strains into CD4(+) cells but show little or no activity in CD4-negative cells or against vesicular stomatitis virus-G pseudotyped virions. The compounds compete with gp120 for binding to CD4: either immobilized on a solid phase (soluble CD4) or on the T-cell surface (native CD4 receptor) as determined by a competitive gp120 capture enzyme-linked immunosorbent assay or flow cytometry. NSC 13778 binds to an N-terminal two-domain CD4 protein, D1/D2 CD4, immobilized on a surface plasmon resonance sensor chip, and dose dependently reduces the emission intensity of intrinsic tryptophan fluorescence of D1/D2 CD4, which contains two of the three tryptophan residues in the gp120-binding domain. Furthermore, T cells incubated with the compounds alone show decreased reactivity to anti-CD4 monoclonal antibodies known to recognize the gp120-binding site. In contrast to gp120-binders that inhibit gp120-CD4 interaction by binding to gp120, these compounds appear to disrupt gp120-CD4 contact by targeting the specific gp120-binding domain of CD4. NSC 13778 may represent a prototype of a new class of HIV-1 entry inhibitors that can break into the gp120-CD4 interface and mask the gp120-binding site on the CD4 molecules, effectively repelling incoming virions.  相似文献   

18.
19.
Immunization of macaques with multivalent DNA encoding gp120 genes from HIV-1 subtypes A, B, C and E and a gag gene followed by boosting with homologous gp120 proteins elicited strong anti-gp120 antibodies capable of neutralizing homologous and to a lesser degree heterologous HIV-1 isolates. Both Env- and Gag-specific cell mediated immune (CMI) responses were detected in the immunized animals. Following rectal challenge with an SHIV isolate encoding HIV-1(Ba-L)env, plasma viremia in the infected immunized animals was significantly lower than that observed in the na?ve animals. Further, one of six immunized animals was completely protected whereas all six na?ve animals were infected. These results demonstrate that a vaccine based on priming with a polyvalent DNA vaccine from multiple HIV-1 subtypes followed by boosting with homologous Env proteins elicits anti-HIV-1 immune responses capable of controlling rectal transmission of SHIV(Ba-L).  相似文献   

20.
We have characterized sera from healthy volunteers immunized with a monomeric recombinant gp120 (rgp120) derived from a CCR5/CXCR4 (R5X4)-using subtype B isolate of human immunodeficiency virus type (HIV-1), HIV-1W61D, in comparison to sera from long-term HIV-1-infected individuals, using homologous reagents. Sera from vaccinees and HIV-1 positive subjects had similar binding titers to native monomeric rgp120W61D and showed a similar titer of antibodies inhibiting the binding of soluble CD4 (sCD4) to rgp120W61D. However, extensive peptide binding studies showed that the overall pattern of recognition of vaccinee and HIV-1-positive sera is different, with vaccinee sera displaying a wider and more potent recognition of linear V1/V2 and V3 domain epitopes. Neutralization of homologous HIV-1W61D or heterologous HIV-1M2424/4 peripheral blood mononuclear cell (PBMC)-derived virus lines by vaccinee sera could be achieved, but only after adaptation of the viruses to T-cell lines and was quickly lost on readaptation to growth in PBMC. Sera from HIV-positive individuals were able to neutralize both PBMC-grown and T-cell line-adapted viruses. Interestingly, rgp120W61D was recognized by monoclonal antibodies previously shown to neutralize primary HIV-1 isolates. The use of very potent adjuvants and R5X4 rgp120 led to an antibody response equivalent in binding activity and inhibition of binding of sCD4 to gp120 to that of HIV-positive individuals but did not lead to the induction of antibodies capable of neutralizing PBMC-grown virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号