首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autoflocculation and bioflocculation are considered to be the most promising means for the economical harvesting of microalgae. We have therefore studied these phenomena with cultures of Scenedesmus obliquus produced during biological tertiary wastewater treatment. The quantity of extracellular polymers produced during ageing of the cultures proved insufficient to initiate bio-flocculation while the concentration of Ca(2+) and PO(4) (3-) of the treated effluent were too low to induce autoflocculation. It has been shown, however, that the algae sediment more readily upon ageing, possibly as a result of increased ceil density. The use of density gradients made with Percoll (a colloidal solution of silica particles) allowed measurement of the true cell density and showed that this increases when cultures enter the declining growth phase. The quality of the biomass thus harvested is, however, considerably impaired, protein content decreasing from 62.7% (dry wt) during the exponential growth phase (day 5) to 14% at the end of cultures (day 21).  相似文献   

2.
Algal autoflocculation--verification and proposed mechanism   总被引:2,自引:0,他引:2  
Biomass autoflocculation in outdoor algal cultures was found to be associated with increases of culture pH levels, due to CO(2) consumption by the algal photosynthetic activity. Under these alkaline conditions, some medium chemical ions precipitated together with the algal biomass. The chemical substances involved with the process and its dependence on pH value were studied by simulation of autoflocculation in laboratory experiments. Proper concentrations of calcium and orthophosphate ions in the medium are important for autoflocculation and, in order to attain it within the pH range 8.5-9.0, the culture should contain 0.1mM-0.2mM orthophosphate and 1.5mM-2.5mM calcium prior to raising the pH level. Calcium phosphate precipitates are considered as the flocculating agent which reacts with the negatively charged surface of the algae and promotes aggregation and flocculation.  相似文献   

3.
The review focuses on new delivery systems of fluoroquinolones, the highly active antibiotics, the therapeutic application of which is still limited due to low bioavailability and low solubility in biological media. The development of suitable delivery systems seems to be a promising solution to these problems. Here, we consider the delivery systems based on synthetic polymers (polylactic and polyglycolic acids and their copolymers, polycaprolactones, etc.) and natural polymers, in particular, polysaccharides. Oligosaccharide delivery systems, conjugates of fluoroquinolones with natural polymers, as well as lipid delivery systems, including liposomes, solid lipid particles, and hybrid particles, are also discussed. The characteristic features of oral, intravenous, and aerosol delivery methods for fluoroquinolones are revealed, which is especially important in the development of new drugs for the treatment of tuberculosis.  相似文献   

4.
Techniques are reviewed for the identification and enrichment of fimbriae-positive and fimbriae-negative Escherichia coli. Fimbriae-positive E. coli were observed to form a semistable suspension of pH 7.0 which settled at a rate much slower than the fimbriae-negative bacteria. Intense autoflocculation of fimbriae-positive E. coli was noted at pH values below 5.2.  相似文献   

5.
The self-assembly of supramolecular complexes of nucleic acids and polymers is of relevance to several biological processes including viral and chromatin formation as well as gene therapy vector design. We now show that template polymerization facilitates condensation of DNA into particles that are <150 nm in diameter. Inclusion of a poly(ethylene glycol)-containing monomer prevents aggregation of these particles. The DNA within the particles remains biologically active and can express foreign genes in cells. The formation or breakage of covalent bonds has until now not been employed to compact DNA into artificial particles.  相似文献   

6.
In additive manufacturing, or 3D printing, material is deposited drop by drop, to create micron to macroscale layers. A typical inkjet ink is a colloidal dispersion containing approximately ten components including solvent, the nano to micron scale particles which will comprise the printed layer, polymeric dispersants to stabilize the particles, and polymers to tune layer strength, surface tension and viscosity. To rationally and efficiently formulate such an ink, it is crucial to know how the components interact. Specifically, which polymers bond to the particle surfaces and how are they attached? Answering this question requires an experimental procedure that discriminates between polymer adsorbed on the particles and free polymer. Further, the method must provide details about how the functional groups of the polymer interact with the particle. In this protocol, we show how to employ centrifugation to separate particles with adsorbed polymer from the rest of the ink, prepare the separated samples for spectroscopic measurement, and use Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) for accurate determination of dispersant/particle bonding mechanisms. A significant advantage of this methodology is that it provides high level mechanistic detail using only simple, commonly available laboratory equipment. This makes crucial data available to almost any formulation laboratory. The method is most useful for inks composed of metal, ceramic, and metal oxide particles in the range of 100 nm or greater. Because of the density and particle size of these inks, they are readily separable with centrifugation. Further, the spectroscopic signatures of such particles are easy to distinguish from absorbed polymer. The primary limitation of this technique is that the spectroscopy is performed ex-situ on the separated and dried particles as opposed to the particles in dispersion. However, results from attenuated total reflectance spectra of the wet separated particles provide evidence for the validity of the DRIFTS measurement.  相似文献   

7.
Magnetic particles have been used widely in both biotechnological and medical fields, including for immunoassay, enzyme immobilization, drug transport, and immunological diagnosis. Especially particles with bioactive molecules such as antibodies and streptavidin are very useful tools for cell separation. Here we report affinity selection of neutrophils and macrophages from peritoneal inflammatory cells performed by thermoresponsive magnetic nanoparticles conjugated with macrophage-specific anti-F4/80 antibody. The magnetic nanoparticles, which are capped with thermoresponsive polymers, are aggregated by heating the particles over 30 degrees C and show their intrinsic magnetism. The neutrophils are concentrated approximately 90% by these magnetic nanoparticles without any activation, indicating that this novel cell separation method could fulfill a wide range of applications in analysis of the isolation of fragile cells such as neutrophils.  相似文献   

8.
κ-Casein as purified from bovine milk exhibits a rather unique disulfide bonding pattern as revealed by SDS-PAGE. The disulfide-bonded caseins present range from dimer to octamer and above and preparations contain about 10% monomer. All of these heterogenous polymers, however, self-associated into nearly spherical uniform particles with an average radius of 8.9 nm as revealed by negatively stained transmission electron micrographs. Evidence is presented that multivalent cations play a role in the stabilization of these spherical particles. Treatment with EDTA causes disruption of theκ-casein particles and leads to a broader size distribution as judged by electron microscopy and dynamic light scattering. The size and shape of the particles are in accord with earlier proposed 3D models forκ-casein that actually predicted participation of divalent cations in the structure.  相似文献   

9.
10.
Polysaccharide-based polymer blends: Methods of their production   总被引:1,自引:0,他引:1  
The existing methods of preparing polymer blends of cellulose, chitin and chitosan with natural and synthetic polymers and their applications are reviewed. The methods of solid-phase blending of these polymers under conditions of joint action of high pressure and shear deformation are discussed. Normally, under these conditions the processes of dispersion of polymer particles, amorphization, mixing at different levels, depolymerization as well as a chemical interaction resulting in formation of branched and crosslinked structures can take place. The probability and intensity of these processes depend in many respects on the type and magnitude of the external force, but the properties of the polymers are of higher importance. The advantages of the method of joint action of high pressure and shear deformation compared to the conventional techniques of polysaccharides mixtures production are shown.  相似文献   

11.
The study demonstrates that embedment of copper particles into thermoplastic polymers (polymers) using cold spray technology is an effective deterrent against fouling organisms. Two polymers, high-density polyethylene (HDPE) and nylon were metallised with copper powder using cold spray technology. After 250 days in the field, Cu-embedded HDPE and copper plate controls were completely free of hard foulers compared to Cu-embedded nylon and polymer controls which were heavily fouled with both soft and hard fouling. Antifouling (AF) success is related to the interaction between the properties of the polymers (elastic modulus and hardness) and the cold spray process which affect particle embedment depth, and subsequently, the release of copper ions as determined by analytical techniques. Embedding metal using cold spray equipment is shown to be an effective AF technology for polymers, in particular those that are difficult to treat with standard AF coatings, with efficacy being a function of the interaction between the cold spray metal and the polymer recipient.  相似文献   

12.
The study demonstrates that embedment of copper particles into thermoplastic polymers (polymers) using cold spray technology is an effective deterrent against fouling organisms. Two polymers, high-density polyethylene (HDPE) and nylon were metallised with copper powder using cold spray technology. After 250 days in the field, Cu-embedded HDPE and copper plate controls were completely free of hard foulers compared to Cu-embedded nylon and polymer controls which were heavily fouled with both soft and hard fouling. Antifouling (AF) success is related to the interaction between the properties of the polymers (elastic modulus and hardness) and the cold spray process which affect particle embedment depth, and subsequently, the release of copper ions as determined by analytical techniques. Embedding metal using cold spray equipment is shown to be an effective AF technology for polymers, in particular those that are difficult to treat with standard AF coatings, with efficacy being a function of the interaction between the cold spray metal and the polymer recipient.  相似文献   

13.
Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff.  相似文献   

14.
We have prepared and screened a library of novel functionalized polymers for development of nanoparticle drug delivery systems. The polymer backbone consisting of two ester-linked, nontoxic, biological monomers, glycerol and adipic acid, was prepared using a hydrolytic enzyme. The specificity of the chosen enzyme yields a linear polymer with one free pendant hydroxyl group per repeat unit, which can be further functionalized. This protocol gives control over the backbone polymer molecular weight, together with the ability to incorporate various amounts of different fatty acyl substituents. These functionalized polymers are able to self-assemble into well-defined small particles of high homogeneity with a very low toxicity. They are able to incorporate a water soluble drug, dexamethasone phosphate, with a high efficiency and drug loading which varies with the polymer specification. The above characteristics strongly suggest that these polymers could be developed into useful nanoparticulate drug delivery systems.  相似文献   

15.
The variety of applications utilizing molecularly imprinted polymers (MIPs) requires synthetic strategies yielding different MIP formats including films, irregular particles, or spheres, along with precise knowledge on the specific material characteristics, such as binding capacity and binding efficiency of these materials. In response to this demand, MIPs are prepared in different formats by variation of the polymerization methodology. It is commonly agreed that micro- and sub-microspheres are particularly advantageous MIP formats, due to their monodispersity and facile synthesis procedures in contrast to conventional imprinted polymers prepared by bulk polymerization. However, the differences in actual rebinding characteristics of different MIP formats based on molecular interactions under a variety of binding/rebinding conditions have not been studied in detail to date. Consequently, the present work details an analytical strategy generically applicable to MIP systems for rebinding studies including equilibrium binding, non-equilibrium binding, and release experiments enabling more profound understanding on the molecular interactions between the imprinted materials and the template molecules. In this study, three MIP formats were considered for the same template molecule, 17beta-estradiol: irregularly shaped particulate polymers prepared by bulk polymerization and grinding, microspheres, and sub-microspheres. The latter two formats were synthesized via precipitation polymerization using different processing strategies. The morphologies and porosities of the resulting imprinted materials were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, respectively. The obtained results indicate that microspheres prepared by precipitation polymerization provide superior rebinding properties during equilibrium binding in contrast to bulk polymers and sub-microspheres, and that the rebinding properties are different during equilibrium binding versus non-equilibrium binding. The median binding affinity constant determined during non-equilibrium rebinding is higher than the values obtained from equilibrium rebinding. Furthermore, the binding site distribution appears more homogeneous thief derived from non-equilibrium rebinding, as reflected in a heterogeneity index of m=0.725. Moreover, it is hypothesized that the specific interactions between template and monomers are related to the porosity of the imprinted polymers, which implies that the amount of binding sites and the pore sized distribution of the imprinted materials are a critical factor in achieving the desired MIP performance in various analytical applications. The BET results indicate that particles prepared with lower cross-linker-to-template ratio have a reduced surface area. Furthermore, it can be expected that there are less specific binding sites available at particles with reduced surface area and pore volume given similar distribution of the binding sites, as confirmed by the equilibrium binding isotherm studies. The pore size distribution results reveal that control of the pore size in the range of 100-180 A is essential to obtain the desired retention properties and Gaussian peak shape during HPLC analysis of small molecules.  相似文献   

16.
The purpose of this investigation was to further characterize the marked increase in intracellular cAMP which follows the interaction of human lymphocytes and latex polymers. Six distinct cell types, each of which either bind or ingest these latex particles, were studied; however, only lymphocytes responded with increases in intracellular cAMP. The initial attachment of the latex particles to the lymphocyte surface was independent of temperature, cyclic nucleotides and divalent cations in the external milieu. The subsequent cAMP response was maximal at physiologic temperatures and modulated by agents thought to alter microfilament and microtubule function. Four different types of polymers produced increases in intralymphocytic cAMP and the maximal increases were confined to particles having a mean diameter of 0.4–2.02 μm. Within this latter size range, there was a close correlation between the number of membrane-associated particles and the magnitude of the cAMP response. Similarities to the lymphocyte-lectin activation system included:
1. 1. A requirement for binding of the latex polymers to the external plasma membrane.
2. 2. A biphasic cAMP response characterized by an early rise followed by a later fall.
3. 3. Modulation of this response by pharmacologic agents which compromise microtubule and microfilament function.
In contrast to the lectin-induced activation, latex beads inhibited amino acid transport and phosphatidylinositol turnover and did not lead to later increases in DNA synthesis. These data suggest that latex polymers attach to receptors on the plasma membrane different from those responsible for lymphocyte activation, and through cAMP induce metabolic responses dissimilar to those associated with lectin activation.  相似文献   

17.
The Saccharomyces cerevisiae [PSI+] prion is a misfolded form of Sup35p that propagates as self-replicating cytoplasmic aggregates. Replication is believed to occur through breakage of transmissible [PSI+] prion particles, or seeds, into more numerous pieces. In [PSI+] cells, large Sup35p aggregates are formed by coalescence of smaller sodium dodecyl sulfate-insoluble polymers. It is uncertain if polymers or higher-order aggregates or both act as prion seeds. A mutant Hsp70 chaperone, Ssa1-21p, reduces the number of transmissible [PSI+] seeds per cell by 10-fold but the overall amount of aggregated Sup35p by only two- to threefold. This discrepancy could be explained if, in SSA1-21 cells, [PSI+] seeds are larger or more of the aggregated Sup35p does not function as a seed. To visualize differences in aggregate size, we constructed a Sup35-green fluorescent protein (GFP) fusion (NGMC) that has normal Sup35p function and can propagate like [PSI+]. Unlike GFP fusions lacking Sup35p's essential C-terminal domain, NGMC did not form fluorescent foci in log-phase [PSI+] cells. However, using fluorescence recovery after photobleaching and size fractionation techniques, we find evidence that NGMC is aggregated in these cells. Furthermore, the aggregates were larger in SSA1-21 cells, but the size of NGMC polymers was unchanged. Possibly, NGMC aggregates are bigger in SSA1-21 cells because they contain more polymers. Our data suggest that Ssa1-21p interferes with disruption of large Sup35p aggregates, which lack or have limited capacity to function as seed, into polymers that function more efficiently as [PSI+] seeds.  相似文献   

18.
Exopolysaccharides (EPSs) are high molecular weight carbohydrate polymers that make up a substantial component of the extracellular polymers surrounding most microbial cells in the marine environment. EPSs constitute a large fraction of the reduced carbon reservoir in the ocean and enhance the survival of marine bacteria by influencing the physicochemical environment around the bacterial cell. Microbial EPSs are abundant in the Antarctic marine environment, for example, in sea ice and ocean particles, where they may assist microbial communities to endure extremes of temperature, salinity, and nutrient availability. The microbial biodiversity of Antarctic ecosystems is relatively unexplored. Deep-sea hydrothermal vent environments are characterized by high pressure, extreme temperature, and heavy metals. The commercial value of microbial EPSs from these habitats has been established recently. Extreme environments offer novel microbial biodiversity that produces varied and promising EPSs. The biotechnological potential of these biopolymers from hydrothermal vent environments as well as from Antarctic marine ecosystems remains largely untapped.  相似文献   

19.
Protein aggregation is a commonly occurring problem in biology. Cells have evolved stress-response mechanisms to cope with problems posed by protein aggregation. Yet, these quality control mechanisms are overwhelmed by chronic aggregation-related stress and the resultant consequences of aggregation become toxic to cells. As a result, a variety of systemic and neurodegenerative diseases are associated with various aspects of protein aggregation and rational approaches to either inhibit aggregation or manipulate the pathways to aggregation might lead to an alleviation of disease phenotypes. To develop such approaches, one needs a rigorous and quantitative understanding of protein aggregation. Much work has been done in this area. However, several unanswered questions linger, and these pertain primarily to the actual mechanism of aggregation as well as to the types of inter-molecular associations and intramolecular fluctuations realized at low protein concentrations. It has been suggested that the concepts underlying protein aggregation are similar to those used to describe the aggregation of synthetic polymers. Following this suggestion, the relevant concepts of polymer aggregation are introduced. The focus is on explaining the driving forces for polymer aggregation and how these driving forces vary with chain length and solution conditions. It is widely accepted that protein aggregation is a nucleation-dependent process. This view is based mainly on the presence of long times for the accumulation of aggregates and the elimination of these lag times with “seeds”. In this sense, protein aggregation is viewed as being analogous to the aggregation of colloidal particles. The theories for polymer aggregation reviewed in this work suggest an alternative mechanism for the origin of long lag times in protein aggregation. The proposed mechanism derives from the recognition that polymers have unique dynamics that distinguish them from other aggregation-prone systems such as colloidal particles.  相似文献   

20.
Dalton HM  Stein J  March PE 《Biofouling》2000,15(1-3):83-94
Minimally adhesive polymers are being developed as potential coatings for use in the marine environment. A 'bioprobe', the bacterium Psychrobacter sp. strain SW5, was employed to detect heterogeneities in substratum hydrophobicity at a micrometer level, rather than the millimeter level detected by traditional contact angle measurements. This novel assay was based on substratum-induced shifts in bacterial morphology and was used to demonstrate that characteristics of these surfaces can be evaluated for maintenance of parameters such as low surface free energy as well as temporal stability when immersed in water. Immersion of developmental substrata in artificial seawater for up to 90d prior to testing with the bioprobe potentially affects the stability of the designed characteristics of the polymers. It is proposed that the shifts in cell and biofilm morphology results from changes influencing the surface hydrophobicity of the polymers. An unpredicted outcome of this testing was the detection of modifications to coatings inferred by the addition of filler particles. Exposure of coatings to the natural microbial community of seawater revealed colonization characteristics that substantiate the results obtained by using the bioindicator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号