首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着深度测序和基因芯片技术的不断发展,基因组、转录组、表达谱数据大量积累。目前,至少有10多个昆虫的基因组已被测序,30多个昆虫的转录组数据被报道。显然,传统的生物统计学方法无法处理如此海量的生物数据。量变引发质变,生物数据的大量积累催生了一门新兴学科,生物信息学。生物信息学融合了统计学、信息科学和生物学等各学科的理论和研究内容,在医学、基础生物学、农业科学以及昆虫学等方面获得了广泛的应用。生物信息学的目标是存储数据、管理数据和数据挖掘。因此,建立维护生物学数据库、设计开发基于模式识别、机器学习、数据挖掘等方法的生物软件,以及运用上述工具进行深度的数据挖掘,是生物信息学的重要研究内容。本文首先简要介绍了生物信息学的历史、研究现状及其在昆虫学科中的应用,然后综述了昆虫基因组学和转录组学的研究进展,最后对生物信息学在昆虫学研究中的应用前景进行了展望。  相似文献   

2.
3.
4.
5.
6.
7.
Enormous amounts of data result from genome sequencing projects and new experimental methods. Within this tremendous amount of genomic data 30-40 per cent of the genes being identified in an organism remain unknown in terms of their biological function. As a consequence of this lack of information the overall schema of all the biological functions occurring in a specific organism cannot be properly represented. To understand the functional properties of the genomic data more experimental data must be collected. A pathway database is an effort to handle the current knowledge of biochemical pathways and in addition can be used for interpretation of sequence data. Some of the existing pathway databases can be interpreted as detailed functional annotations of genomes because they are tightly integrated with genomic information. However, experimental data are often lacking in these databases. This paper summarises a list of pathway databases and some of their corresponding biological databases, and also focuses on information about the content and the structure of these databases, the organisation of the data and the reliability of stored information from a biological point of view. Moreover, information about the representation of the pathway data and tools to work with the data are given. Advantages and disadvantages of the analysed databases are pointed out, and an overview to biological scientists on how to use these pathway databases is given.  相似文献   

8.
The development of high-throughput technologies has generated the need for bioinformatics approaches to assess the biological relevance of gene networks. Although several tools have been proposed for analysing the enrichment of functional categories in a set of genes, none of them is suitable for evaluating the biological relevance of the gene network. We propose a procedure and develop a web-based resource (BIOREL) to estimate the functional bias (biological relevance) of any given genetic network by integrating different sources of biological information. The weights of the edges in the network may be either binary or continuous. These essential features make our web tool unique among many similar services. BIOREL provides standardized estimations of the network biases extracted from independent data. By the analyses of real data we demonstrate that the potential application of BIOREL ranges from various benchmarking purposes to systematic analysis of the network biology.  相似文献   

9.
Next-generation sequencing technologies have generated, and continue to produce, an increasingly large corpus of biological data. The data generated are inherently compositional as they convey only relative information dependent upon the capacity of the instrument, experimental design and technical bias. There is considerable information to be gained through network analysis by studying the interactions between components within a system. Network theory methods using compositional data are powerful approaches for quantifying relationships between biological components and their relevance to phenotype, environmental conditions or other external variables. However, many of the statistical assumptions used for network analysis are not designed for compositional data and can bias downstream results. In this mini-review, we illustrate the utility of network theory in biological systems and investigate modern techniques while introducing researchers to frameworks for implementation. We overview (1) compositional data analysis, (2) data transformations and (3) network theory along with insight on a battery of network types including static-, temporal-, sample-specific- and differential-networks. The intention of this mini-review is not to provide a comprehensive overview of network methods, rather to introduce microbiology researchers to (semi)-unsupervised data-driven approaches for inferring latent structures that may give insight into biological phenomena or abstract mechanics of complex systems.  相似文献   

10.
高通量实验方法的发展导致大量基因组、转录组、代谢组等组学数据的出现,组学数据的整合为全面了解生物学系统提供了条件.但是,由于当前实验技术手段的限制,高通量组学数据大多存在系统偏差,数据类型和可靠程度也各不相同,这给组学数据的整合带来了困难.本文以转录组、蛋白质组和代谢组为重点,综述了近年来组学数据整合方面的研究进展,包括新的数据整合方法和分析平台.虽然现存的数据统计和网络分析的方法有助于发现不同组学数据之间的关联,但是生物学意义上的深层次的数据整合还有待于生物、数学、计算机等各种领域的全面发展.  相似文献   

11.
12.
13.
14.
15.
One of the most important goals of biological investigation is to uncover gene functional relations. In this study we propose a framework for extraction and integration of gene functional relations from diverse biological data sources, including gene expression data, biological literature and genomic sequence information. We introduce a two-layered Bayesian network approach to integrate relations from multiple sources into a genome-wide functional network. An experimental study was conducted on a test-bed of Arabidopsis thaliana. Evaluation of the integrated network demonstrated that relation integration could improve the reliability of relations by combining evidence from different data sources. Domain expert judgments on the gene functional clusters in the network confirmed the validity of our approach for relation integration and network inference.  相似文献   

16.
17.
Diseased animals may exhibit behavioral shifts that increase or decrease their probability of being randomly sampled. In harvest-based sampling approaches, animal movements, changes in habitat utilization, changes in breeding behaviors during harvest periods, or differential susceptibility to harvest via behaviors like hiding or decreased sensitivity to stimuli may result in a non-random sample that biases prevalence estimates. We present a method that can be used to determine whether bias exists in prevalence estimates from harvest samples. Using data from harvested mule deer (Odocoileus hemionus) sampled in northcentral Colorado (USA) during fall hunting seasons 1996-98 and Akaike's information criterion (AIC) model selection, we detected within-yr trends indicating potential bias in harvest-based prevalence estimates for chronic wasting disease (CWD). The proportion of CWD-positive deer harvested slightly increased through time within a yr. We speculate that differential susceptibility to harvest or breeding season movements may explain the positive trend in proportion of CWD-positive deer harvested during fall hunting seasons. Detection of bias may provide information about temporal patterns of a disease, suggest biological hypotheses that could further understanding of a disease, or provide wildlife managers with information about when diseased animals are more or less likely to be harvested. Although AIC model selection can be useful for detecting bias in data, it has limited utility in determining underlying causes of bias. In cases where bias is detected in data using such model selection methods, then design-based methods (i.e., experimental manipulation) may be necessary to assign causality.  相似文献   

18.
ABSTRACT: BACKGROUND: Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. RESULTS: We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. CONCLUSIONS: The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.  相似文献   

19.
Uncovering functional associations for genes and gene products remains one of the most significant challenges in biology. The classical approaches, such as homology detection, are mainly suited for predicting approximate molecular function of a protein and should be used in context with other methods. Several studies have emerged that employ knowledge-based procedures to extract functional data for genes from a variety of biological sources. However, data derived from a single biological resource often provides only a limited perspective on their functional associations largely due to systematic bias in the underlying data. The post-genomic era has witnessed the emergence of knowledge-based studies that aim to decipher functional associations by combining several biological evidence types. These are expected to provide better insights into the functional aspects of diverse genes, genomes and networks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号