首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor (TNF) is the prototypic member of the TNF ligand family and has a key role in the regulation of inflammatory processes. TNF exerts its functions by interaction with the death domain-containing TNF-receptor 1 (TNF-R1) and the non-death domain-containing TNF-receptor 2 (TNF-R2), both members of a receptor family complementary to the TNF ligand family. Due to the prototypic features of the TNF receptors and their importance for the regulation of inflammation, the signal transduction mechanisms utilized by these receptors have been extensively studied. Several proteins that interact directly or indirectly with the cytoplasmic domains of TNF-R1 and TNF-R2 have been identified in the recent years giving ideas how these receptors are connected to the apoptotic pathway and the signaling cascades leading to activation of NF-kappaB and JNK. Of special interest are TNF receptor-associated factor (TRAF) 1 and 2, which defines a novel group of adaptor proteins involved in signal transduction by most members of the TNF receptor family, of IL-1 receptor and IL-17 receptor as well as some members of the TOLL-like receptor family. TRAF 2 is currently the best-characterized TRAF family member, having a key role in mediating TNF-R1-induced activation of NF-kappaB and JNK. Moreover, recent studies suggest that TRAF 2 represents an integration point for pro- and antiapoptotic signals. This review focuses on the molecular mechanisms that underlay signal initiation by TNF-R1 and TNF-R2, with particular consideration of the role of TRAF 2, and highlights the importance of this molecule for the integration of such antagonizing pathways as death induction and NF-kappaB-mediated surviving signals.  相似文献   

2.
The Bcl-2 family in autoimmune and degenerative disorders   总被引:1,自引:0,他引:1  
Members of the Bcl-2 family are essential regulators of programmed cell death and thus play a major role in the development and function of many tissues. The balance between pro-survival and pro-apoptotic members of the family decides whether a cell will live or die. This mechanism allows organisms to get rid of cells that are no longer needed or have become dangerous. Deregulation of apoptosis is a major contributing factor in the development of many diseases. A deeper understanding of how the Bcl-2 family proteins orchestrate death in normal and pathologic conditions is thus relevant not only for disease etiology, but also to try to prevent these various disorders. Experiments with transgenic and gene-ablated mice have helped elucidate the function of the different members of the Bcl-2 family and their physiological roles. The present review highlights the role of Bcl-2 family members in autoimmune and degenerative disorders, with a particular focus on the mouse models that have been used to study their function.  相似文献   

3.
The Bcl-2 family includes a growing number of proteins that play an essential role in regulating apoptosis or programmed cell death. Members of this family display diverse biological functions and can either inhibit or promote cell death signals. Abnormal gene expression of some Bcl-2 family members such as Bcl-2 that inhibits apoptosis is found in a wide variety of human cancers and contributes to the resistance of tumor cells to conventional therapies through interfering with the cell death signals triggered by chemotherapeutic agents. As such, elucidating the structure-function and mechanism of the Bcl-2 family is important for understanding some of the fundamental principles underling the death and survival of cells and of practical value for developing potential therapeutics to control apoptosis in pathological processes. Synthetic peptides derived from homologous or heterogeneous domains in Bcl-2 family proteins that might mediate different biological activities provide simplified and experimentally more tractable models as compared to their full-length counterparts to dissect and analyze the complex functional roles of these proteins. Non-peptidic molecules identified from random screening of natural products or designed by rational structure-based techniques can mimic the effect of synthetic peptides by targeting similar active sites on a Bcl-2 family member protein. In this article, we review recent progress in using these synthetic peptides and non-peptidic mimic molecules to obtain information about the structure and function of Bcl-2 family proteins and discuss their application in modulating and studying intracellular apoptotic signaling.  相似文献   

4.
5.
DIRAS family is a group of GTPases belonging to the RAS superfamily and shares homology with the pro-oncogenic Ras GTPases. Currently, accumulating evidence show that DIRAS family members could be identified as putative tumor suppressors in various cancers. The either lost or reduced expression of DIRAS proteins play an important role in cancer development, including cell growth, migration, apoptosis, autophagic cell death, and tumor dormancy. This review focuses on the latest research regarding the roles and mechanisms of the DIRAS family members in regulating Ras function, cancer development, assessing potential challenges, and providing insights into the possibility of targeting them for therapeutic use.  相似文献   

6.
Caspase family proteases and apoptosis   总被引:45,自引:0,他引:45  
Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin- 1 ~-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regu- lated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain, and Ca^2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.  相似文献   

7.
细胞凋亡在神经细胞的生理性和病理性死亡中起着重要作用。唯BH3域蛋白是Bcl-2家族中的一类仅含有BH3同源结构域的促凋亡分子,它们通过抑制Bcl-2抗凋亡成员的活性或激活Bax/Bak样促凋亡成员的活性来调节细胞凋亡。最近研究表明,唯BH3域蛋白在凋亡的启动及凋亡通路的沟通中发挥着极其重要的作用。  相似文献   

8.
细胞凋亡中的Bcl-2家族蛋白及其BH3结构域的功能研究   总被引:8,自引:0,他引:8  
凋亡相关蛋白中的Bcl-2家族是细胞凋亡的关键调节分子,由抗凋亡和促凋亡成员组成,这些成员之间通过相互协同作用调节了线粒体结构与功能的稳定性,从而在线粒体水平发挥着细胞凋亡的“开关”作用.抗凋亡成员大都分布于线粒体的外膜,与促凋亡成员的BH3结构域相互作用对细胞凋亡发挥抵抗作用.促凋亡成员则主要分布于细胞浆中,细胞接受死亡信号刺激后,促凋亡成员自身受到一系列的调节,如典型的Bax构象改变、BAD和Bik的磷酸化调节以及Bid和Bim的蛋白裂解效应等,使得促凋亡成员在凋亡信号的刺激下整合于线粒体外膜,最终导致线粒体通透转换孔的开放,进而释放包括细胞色素c、凋亡诱导因子、Smac等重要的凋亡因子,随后caspase被激活进而断裂重要的细胞内结构蛋白与功能分子,执行细胞凋亡.  相似文献   

9.
10.
Necroptosis is a physiologically relevant mode of cell death with some well-described initiating events, but largely unknown executioners. Here we investigated necrostatin-1 (Nec-1) sensitive death elicited by different necroptosis stimuli in L929 mouse fibrosarcoma cells, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages. We found that TNFα- or zVAD-induced necroptosis occurs independently of the recently implicated executioners Bmf or PARP-2, but can involve the Bcl-2 family proteins Bid and Bak. Furthermore, this type of necroptosis is associated with mitochondrial cytochrome c release and partly sensitive to cyclosporine A inhibition, suggesting a cross talk with the mitochondrial permeability transition pore. Necroptosis triggered by cadmium (Cd) exposure caused fully Nec-1-sensitive and caspase-independent death in L929 cells that was associated with autocrine TNFα-mediated feed-forward signalling. In MEF Cd-exposure elicited a mixed mode of cell death that was to some extent Nec-1-sensitive but also displayed features of apoptosis. It was partly dependent on Bmf and Bax/Bak, proteins typically considered to act pro-apoptotic, but ultimately insensitive to caspase inhibition. Overall, our study indicates that inducers of “extrinsic” and “intrinsic” necroptosis can both trigger TNF-receptor signalling. Further, necroptosis may depend on mitochondrial changes engaging proteins considered critical for MOMP during apoptosis that ultimately contribute to caspase-independent necrotic cell death.  相似文献   

11.
The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different ‘modes'' by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.  相似文献   

12.
13.
Role of Bcl-2 family members in invertebrates   总被引:4,自引:0,他引:4  
Proteins belonging to the Bcl-2 family function as regulators of 'life-or-death' decisions in response to various intrinsic and extrinsic stimuli. In mammals, cell death is controlled by pro- and anti-apoptotic members of the Bcl-2 family, which function upstream of the caspase cascade. Structural and functional homologues of the Bcl-2 family proteins also exist in lower eukaryotes, such as nematodes and flies. In nematodes, an anti-apoptotic Bcl-2 family protein, CED-9, functions as a potent cell death inhibitor, and a BH3-only protein, EGL-1, acts as an inhibitor of CED-9 to facilitate the spatio-temporal regulation of programmed cell death. On the other hand, the Drosophila genome encodes two Bcl-2 family proteins, Drob-1/Debcl/dBorg-1/dBok and Buffy/dBorg-2, both of which structurally belong to the pro-apoptotic group, despite abundant similarities in the cell death mechanisms between flies and vertebrates. Drob-1 acts as a pro-apoptotic factor in vitro and in vivo, and Buffy/dBorg-2 exhibits a weak anti-apoptotic function. The ancestral role of the Bcl-2 family protein may be pro-apoptotic, and the evolution of the functions of this family of proteins may be closely linked with the contribution of mitochondria to the cell death pathway.  相似文献   

14.
Mitochondria play a pivotal role in the process of apoptosis. Alterations in mitochondrial structure and function during apoptosis are regulated by proteins of the BCL-2 family, however their exact mechanism of action is largely unknown. Mitochondrial carriers and pores play an essential role in maintaining the normal function of mitochondria, and BCL-2 family members were shown to interact with several mitochondrial carriers/pores and to affect their function. This review focuses on the involvement of several of these mitochondrial carriers/pores in the regulation of the mitochondrial death pathway.  相似文献   

15.
Bcl-2 family members and disease   总被引:9,自引:0,他引:9  
Apoptosis plays an important role during development and in the maintenance of multicellular organisms. Bcl-2 family members affect cell death in either a positive or negative fashion. Although some redundancy exists between family members, expression of certain family members is important during development in an organ-specific manner. The founding family member bcl-2 tends to be highly expressed in the embryo and declines postnatally following differentiation and maturation. Altered expression of bcl-2, as well as other family members, has been observed in disease states potentially affecting treatment modalities. Here we examine the distribution and role death repressors bcl-2, bcl-x(L) and bcl-w as well as death effectors bax and bak play regulating apoptosis in a tissue-specific manner. Understanding the normal role of these proteins during embryogenesis and in the mature organ will give us important insight into what goes awry in various disease states.  相似文献   

16.
The three major subgroups of the Bcl-2 family, including the prosurvival Bcl-2-like proteins, the proapoptotic Bcl-2 homology (BH)3-only proteins and Bax/Bak proteins, regulate the mitochondrial apoptotic pathway. In addition, some outliers within the Bcl-2 family do not fit into these subgroups. One of them, Bcl-G, has a BH2 and a BH3 region, and was proposed to trigger apoptosis. To investigate the physiological role of Bcl-G, we have inactivated the gene in the mouse and generated monoclonal antibodies to determine its expression. Although two isoforms of Bcl-G exist in human, only one is found in mice. mBcl-G is expressed in a range of epithelial as well as in dendritic cells. Loss of Bcl-G did not appear to affect any of these cell types. mBcl-G only binds weakly to prosurvival members of the Bcl-2 family, and in a manner that is independent of its BH3 domain. To understand what the physiological role of Bcl-G might be, we searched for Bcl-G-binding partners through immunoprecipitation/mass spectroscopy and yeast-two-hybrid screening. Although we did not uncover any Bcl-2 family member in these screens, we found that Bcl-G interacts specifically with proteins of the transport particle protein complex. We conclude that Bcl-G most probably does not function in the classical stress-induced apoptosis pathway, but rather has a role in protein trafficking inside the cell.  相似文献   

17.
Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family.  相似文献   

18.
19.
Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.  相似文献   

20.
The Inhibitor of Apoptosis Protein family (IAP) functions as inhibitors of apoptotic pathways, both death receptor- and mitochondrial mediated. We detail the current body of knowledge for the IAP family with regard to their structure and function, their expression in normal and leukemic cells, and their prognostic importance in acute leukemia. Although there is some evidence that IAPs play an important role in the chemoresistance of leukemia cell lines, little is known about their influence on this phenomenon in acute leukemia cells of human origin. IAPs are also explored as a specific target for new antitumor strategies, including antisense oligonucleotides of XIAP (X-chromosome-linked IAP) or survivin and small molecules of polyphenylurea-based XIAP inhibitors. Several proteins negatively regulate the function of the IAP family. One of those antagonists is Smac/DIABLO. Short peptides of Smac were found to enhanced apoptosis, induced by chemo- or immunotherapy, in the leukemic cells in vitro. Moreover, small-molecule agents, resembling Smac/DIABLO in function, were shown to potentiate cytotoxicity of chemotherapy in different malignancies. IAPs, exhibiting downstream influence on both external and intrinsic pathways as well as on some caspase-independent mechanisms of apoptosis, are potentially attractive target for anti-tumor therapy, although their role in the pathology and prognosis of acute leukemia has to be further elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号