首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse embryos lacking the retinoic acid receptor RXRalpha properly undergo the early steps of heart development, but then fail to initiate a proliferative expansion of cardiomyocytes that normally results in the formation of the compact zone of the ventricular chamber wall. RXRalpha(-/-) embryos have a hypoplastic ventricular chamber and die in midgestation from cardiac insufficiency. In this study, we have investigated the underlying mechanistic basis of this phenotype. We find that interference with retinoic acid receptor function in the epicardium of transgenic embryos recapitulates the hypoplastic phenotype of RXRalpha deficient embryos. We further show that wild type primary epicardial cells, and an established epicardial cell line (EMC cells), secrete trophic protein factors into conditioned media that stimulate thymidine incorporation in primary fetal cardiomyocytes, and thymidine incorporation, cell cycle progression, and induction of cyclin D1 and E activity in NIH3T3 cells. In contrast, primary epicardial cells derived from RXRalpha(-/-) embryos and an EMC subline constitutively expressing a dominant negative receptor construct both fail to secrete activity into conditioned media. The production of trophic factors is induced by retinoic acid treatment and is inhibited by a retinoid receptor antagonist. Fetal atrial and ventricular myocytes both respond to epicardial-derived trophic signaling, although postnatal cardiomyocytes are nonresponsive. We therefore propose that the fetal epicardium, in response to retinoic acid and in a manner requiring the activity of RXRalpha, secretes trophic factors which drive fetal cardiomyocyte proliferation and promote ventricular chamber morphogenesis.  相似文献   

2.
Strategies to improve retinal progenitor cell (RPC) capacity to yield proliferative and multipotent pools of cells that can efficiently differentiate into retinal neurons, including photoreceptors, could be vital for cell therapy in retinal degenerative diseases. In this study, we found that insulin-like growth factor-1 (IGF-1) plays a role in the regulation of proliferation and differentiation of RPCs. Our results show that IGF-1 promotes RPC proliferation via IGF-1 receptors (IGF-1Rs), stimulating increased phosphorylation in the PI3K/Akt and MAPK/Erk pathways. An inhibitor experiment revealed that IGF-1-induced RPC proliferation was inhibited when the PI3K/Akt and MAPK/Erk pathways were blocked. Furthermore, under the condition of differentiation, IGF-1-pretreated RPCs prefer to differentiate into retinal neurons, including photoreceptors, in vitro, which is crucial for visual formation and visual restoration. These results demonstrate that IGF-1 accelerates the proliferation of RPCs and IGF-1 pretreated RPCs may have shown an increased potential for retinal neuron differentiation, providing a novel strategy for regulating the proliferation and differentiation of retinal progenitors in vitro and shedding light upon the application of RPCs in retinal cell therapy.  相似文献   

3.
Understanding the mechanisms that direct mesenchymal stem cell (MSC) self‐renewal fate decisions is a key to most tissue regenerative approaches. The aim of this study here was to investigate the mechanisms of action of platelet‐derived growth factor receptor β (PDGFRβ) signalling on MSC proliferation and differentiation. MSC were cultured and stimulated with PDGF‐BB together with inhibitors of second messenger pathways. Cell proliferation was assessed using ethynyl‐2′‐deoxyuridine and phosphorylation status of signalling molecules assessed by Western Blots. To assess differentiation potentials, cells were transferred to adipogenic or osteogenic media, and differentiation assessed by expression of differentiation association genes by qRT‐PCR, and by long‐term culture assays. Our results showed that distinct pathways with opposing actions were activated by PDGF. PI3K/Akt signalling was the main contributor to MSC proliferation in response to activation of PDGFRβ. We also demonstrate a negative feedback mechanism between PI3K/Akt and PDGFR‐β expression. In addition, PI3K/Akt downstream signal cascades, mTOR and its associated proteins p70S6K and 4E‐BP1 were involved. These pathways induced the expression of cyclin D1, cyclin D3 and CDK6 to promote cell cycle progression and MSC proliferation. In contrast, activation of Erk by PDGFRβ signalling potently inhibited the adipocytic differentiation of MSCs by blocking PPARγ and CEBPα expression. The data suggest that PDGFRβ‐induced Akt and Erk pathways regulate opposing fate decisions of proliferation and differentiation to promote MSC self‐renewal. Thus, activation of multiple intracellular cascades is required for successful and sustainable MSC self‐renewal strategies.  相似文献   

4.
5.

Objectives

Neuregulin 1 signaling plays an important role in cardiac trabecular development, and in sustaining functional integrity in adult hearts. Treatment with neuregulin 1 enhances adult cardiomyocyte differentiation, survival and/or function in vitro and in vivo. It has also been suggested that recombinant neuregulin 1β1 (NRG1β1) induces cardiomyocyte proliferation in normal and injured adult hearts. Here we further explore the impact of neuregulin 1 signaling on adult cardiomyocyte cell cycle activity.

Methods and Results

Adult mice were subjected to 9 consecutive daily injections of recombinant NRG1β1 or vehicle, and cardiomyocyte DNA synthesis was quantitated via bromodeoxyuridine (BrdU) incorporation, which was delivered using mini-osmotic pumps over the entire duration of NRG1β1 treatment. NRG1β1 treatment inhibited baseline rates of cardiomyocyte DNA synthesis in normal mice (cardiomyocyte labelling index: 0.019±0.005% vs. 0.003±0.001%, saline vs. NRG1β1, P<0.05). Acute NRG1β1 treatment did result in activation of Erk1/2 and cardiac myosin regulatory light chain (down-stream mediators of neuregulin signalling), as well as activation of DNA synthesis in non-cardiomyocytes, validating the biological activity of the recombinant protein. In other studies, mice were subjected to permanent coronary artery occlusion, and cardiomyocyte DNA synthesis was monitored via tritiated thymidine incorporation which was delivered as a single injection 7 days post-infarction. Daily NRG1β1 treatment had no impact on cardiomyocyte DNA synthesis in the infarcted myocardium (cardiomyocyte labelling index: 0.039±0.011% vs. 0.027±0.021%, saline vs. NRG1β1, P>0.05).

Summary

These data indicate that NRG1β1 treatment does not increase cardiomyocyte DNA synthesis (and consequently does not increase the rate of cardiomyocyte renewal) in normal or infarcted adult mouse hearts. Thus, any improvement in cardiac structure and function observed following neuregulin treatment of injured hearts likely occurs independently of overt myocardial regeneration.  相似文献   

6.
In many systems, activation of the "protein and lipid kinase" phosphoinositide 3-kinase (PI 3-kinase) and its downstream serine-threonine kinase effector, Akt (or Protein Kinase B), provide a potent stimulus for cell proliferation, growth, and survival. In the heart, constrained by the limited proliferative capacity of cardiomyocytes, this pathway plays a key role in regulating cardiomyocyte growth and survival, with little effect on proliferation. Simultaneously, PI 3-kinase and Akt are important modulators of metabolic substrate utilization and cardiomyocyte function. Thus, the convergent signaling pathways controlling so many clinically important phenotypes of the cardiomyocyte suggest it holds promise as a therapeutic target in a variety of cardiac diseases. However, the similar role of PI 3-kinase/Akt signaling in neoplasia suggests the difficulty of activating this pathway in the heart without invoking adverse consequences elsewhere. Here we review evidence regarding the role of PI 3-kinase/Akt in controlling cardiomyocyte growth and survival, and discuss the implications for therapeutic strategies.  相似文献   

7.
In many systems, activation of the “protein and lipid kinase” phosphoinositide 3-kinase (PI 3-kinase) and its downstream serine-threonine kinase effector, Akt (or Protein Kinase B), provide a potent stimulus for cell proliferation, growth, and survival. In the heart, constrained by the limited proliferative capacity of cardiomyocytes, this pathway plays a key role in regulating cardiomyocyte growth and survival, with little effect on proliferation. Simultaneously, PI 3-kinase and Akt are important modulators of metabolic substrate utilization and cardiomyocyte function. Thus, the convergent signaling pathways controlling so many clinical important phenotypes of the cardiomyocyte suggest it holds promise as a therapeutic target in a variety of cardiac diseases. However, the similar role of PI 3-kinase/Akt signaling in neoplasia suggests the difficulty of activating this pathway in the heart without invoking adverse consequences elsewhere. Here we review evidence regarding the role of PI 3-kinase/Akt in controlling cardiomyocyte growth and survival, and discuss the implications for therapeutic strategies.  相似文献   

8.
All-trans retinoic acid (ATRA) affects cell proliferation, differentiation and apoptosis through its receptors, RARs and RXRs. Besides these, other receptors such as orphan receptor TR3, are also involved in the regulatory process of ATRA. However, how different receptors function in response to ATRA is still largely unknown. In the present study, we found that formation of TR3/RXRalpha heterodimers in the nucleus and their subsequent translocation into the cytoplasm, in association with regulation of apoptosis-related proteins Bcl-2, Bcl-xl and Bax, was critical for apoptosis induction by ATRA in breast cancer cells MCF-7. When such translocation was blocked by Leptomycin B (LMB), ATRA-induced apoptosis was consequently abolished. However, in ATRA-induced gastric cancer cells MGC80-3, RXRalpha heterodimerised with RARalpha but not with TR3, and remained in the nucleus exerting its effect on cell cycle regulation. When transfected with antisense-RARalpha, MGC80-3 cells changed from ATRA-sensitive to ATRA-resistant and most cells were arrested in the S phase, implying the importance of RARalpha in cell cycle regulation. Furthermore, we demonstrated that the effects of ATRA depend on the relative levels of TR3, RARalpha and RXRalpha expression in cancer cells. In ATRA-induced MCF-7 cells, highly expressed TR3 favours the formation of TR3/RXRalpha and promotes the TR3/RXRalpha signalling pathway causing apoptosis; while in ATRA-induced MGC80-3 cells, high expression of RARalpha favours the formation of RARalpha/RXRalpha and promotes the RXRalpha/RARalpha signalling pathway in mediating cell cycle regulation. In conclusion, these results reveal the novel mechanism that cellular expression and location of protein is associated with diverse signalling transduction pathways and the resultant physiological process.  相似文献   

9.
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.  相似文献   

10.
11.
Depending on the stage of development, a growth factor can mediate cell proliferation, survival or differentiation. The interaction of cell-surface integrins with extracellular matrix ligands can regulate growth factor responses and thus may influence the effect mediated by the growth factor. Here we show, by using mice lacking the alpha(6) integrin receptor for laminins, that myelin-forming oligodendrocytes activate an integrin-regulated switch in survival signalling when they contact axonal laminins. This switch alters survival signalling mediated by neuregulin from dependence on the phosphatidylinositol-3-OH kinase (PI(3)K) pathway to dependence on the mitogen-activated kinase pathway. The consequent enhanced survival provides a mechanism for target-dependent selection during development of the central nervous system. This integrin-regulated switch reverses the capacity of neuregulin to inhibit the differentiation of precursors, thereby explaining how neuregulin subsequently promotes differentiation and survival in myelinating oligodendrocytes. Our results provide a general mechanism by which growth factors can exert apparently contradictory effects at different stages of development in individual cell lineages.  相似文献   

12.
Stimulation by both adrenergic and non-adrenergic pathways can induce proliferation of brown pre-adipocytes. To understand the signalling pathways involved in non-adrenergic stimulation of cell proliferation, we examined Erk1/2 activation. In primary cultures of mouse brown pre-adipocytes, both EGF (epidermal growth factor) and PDGF (platelet-derived growth factor) induced Erk1/2 activation. EGF-stimulated Erk1/2 activation involved Src tyrosine kinases, but not PKC or PI3K, whereas in PDGF-induced Erk1/2 activation, PI3K, PKC (probably the atypical ζ isoform) and Src were involved sequentially. Both EGF and PDGF induced PI3K-dependent Akt activation that was not involved in Erk1/2 activation. By comparing effects of signalling inhibitors (wortmannin, SH-6, TPA, Gö6983, PP2, PD98059) on EGF- and PDGF-induced Erk1/2 activation and cell proliferation (3H-thymidine incorporation), we conclude that while the signal transduction pathways initiated by these growth factors are clearly markedly different, their effects on cell proliferation can be fully explained through their stimulation of Erk1/2 activation; thus Erk1/2 is a common, essential step for stimulation of proliferation in these cells.  相似文献   

13.
多潜能干细胞具有无限增殖的能力,并能够分化为心肌细胞,因此在心脏再生方面拥有巨大潜力.胚胎发育过程为干细胞定向分化提供了重要线索,在过去的几年中,通过操控心脏发育关键通路,在心肌定向分化方面取得了重要进展,但是现有的分化方法仍不能稳定地诱导心肌细胞,表明现有的通路不能有效解决这些问题.视黄酸(RA)通路在心脏发育过程中发挥重要作用,RA缺失会导致心房变小、心室小梁减少、心肌壁增厚且细胞间连接松散.在体外心肌定向分化过程中,RA多用于促进多潜能干细胞向心房分化.但从RA通路基因敲除小鼠的表型来看,除了调控心肌亚型分化,RA在多个发育阶段发挥重要作用.深入解析RA在心肌分化各阶段的作用机制,将有助于获得高质量的心肌细胞.同时,研究RA在心内膜和心外膜分化中的作用机制也有助于解释RA通路敲除小鼠的心脏异常.总之,从RA在胚胎发育中的作用来看,需要更多的体外研究来揭示RA在心肌谱系分化中的作用.本文综述了RA通路在心脏发育的心肌分化过程中的作用,并探讨了需要解决的问题.  相似文献   

14.
Growth of the fetal heart involves cardiomyocyte enlargement, division, and maturation. Insulin-like growth factor-1 (IGF-1) is implicated in many aspects of growth and is likely to be important in developmental heart growth. IGF-1 stimulates the IGF-1 receptor (IGF1R) and downstream signaling pathways, including extracellular signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K). We hypothesized that IGF-1 stimulates cardiomyocyte proliferation and enlargement through stimulation of the ERK cascade and stimulates cardiomyocyte differentiation through the PI3K cascade. In vivo administration of Long R3 IGF-1 (LR3 IGF-1) did not stimulate cardiomyocyte hypertrophy but led to a decreased percentage of cells that were binucleated in vivo. In culture, LR3 IGF-1 increased myocyte bromodeoxyuridine (BrdU) uptake by three- to five-fold. The blockade of either ERK or PI3K signaling (by UO-126 or LY-294002, respectively) completely abolished BrdU uptake stimulated by LR3 IGF-1. LR3 IGF-1 did not increase footprint area, but as expected, phenylephrine stimulated an increase in binucleated cardiomyocyte size. We conclude that 1) IGF-1 through IGF1R stimulates cardiomyocyte division in vivo; hyperplastic growth is the most likely explanation of IGF-1 stimulated heart growth in vivo; 2) IGF-1 through IGF1R does not stimulate binucleation in vitro or in vivo; 3) IGF-1 through IGF1R does not stimulate hypertrophy either in vivo or in vitro; and 4) IGF-1 through IGF1R requires both ERK and PI3K signaling for proliferation of near-term fetal sheep cardiomyocytes in vitro.  相似文献   

15.
The cytokine erythropoietin (Epo) is an essential factor promoting the survival, proliferation, and differentiation of erythroid progenitor cells. Epo expression and the initial phase of definitive erythropoietic differentiation in the fetal liver (E9-E12) are compromised in mouse embryos lacking the retinoic acid receptor RXRalpha. Our previous work demonstrated that the Epo gene is a direct target of retinoic acid action, via a retinoic acid receptor binding site in the Epo gene enhancer. However, Epo expression and erythropoietic differentiation become normalized in RXRalpha mutants from E12. In this study, we have investigated the molecular mechanisms underlying the transition in Epo gene regulation from RXRalpha-dependence to RXRalpha-independence. We find that three independent regulatory components are required for high level Epo expression in the early fetal liver: ligand-activated retinoic acid receptors, the hypoxia-regulated factor HIF1, and GATA factors. By E11.5, the fetal liver is no longer hypoxic, and retinoic acid signaling is no longer active; Epo expression from E11.5 onward is enhancer-independent, and is driven instead by basal promoter elements that provide a sufficient level of expression to support further erythropoietic differentiation.  相似文献   

16.
17.
18.
Mouse F9 embryocarcinoma cells constitute a well established cell autonomous model system for investigating retinoic acid (RA) signaling in vitro. RA induces the differentiation of F9 cells grown as monolayers into endodermal-like cells and decreases their rate of proliferation. Knock-out of the retinoic X receptor alpha (RXRalpha) gene abolishes endodermal differentiation and the induction of several endogenous RA-responsive genes. RXRalpha null cells are also drastically impaired in their antiproliferative response to RA. The role of the RXRalpha phosphorylation site located in the N-terminal A region (Ser(22)) has been investigated here by establishing cell lines re-expressing RXRalpha either wild type or mutated at the phosphorylation site (RXRalphaS22A) in a RXRalpha-null background. We show that Ser(22) is dispensable for RA-induced endodermal differentiation but is crucial for the expression of several RA-responsive genes. Ser(22) is also indispensable for the antiproliferative effect of RA and necessary for the RA-induced down-regulation of p21(CIP) and p27(KIP) CKIs proteins that are known to be involved in the control of cell cycle progression.  相似文献   

19.
20.
Sonic hedgehog (Shh) has been reported to act as a mitogen and survival factor for muscle satellite cells. However, its role in their differentiation remains ambiguous. Here, we provide evidence that Shh promotes the proliferation and differentiation of primary cultures of chicken adult myoblasts (also termed satellite cells) and mouse myogenic C2 cells. These effects are reversed by cyclopamine, a specific chemical inhibitor of the Shh pathway. In addition, we show that Shh and its downstream molecules are expressed in adult myoblast cultures and localize adjacent to Pax7 in muscle sections. These gene expressions are regulated during postnatal muscle growth in chicks. Most importantly, we report that Shh induces MAPK/ERK and phosphoinositide 3-kinase (PI3K)-dependent Akt phosphorylation and that activation of both signaling pathways is essential for Shh's signaling in muscle cells. However, the effect of Shh on Akt phosphorylation is more robust than that on MAPK/ERK, and data suggest that Shh influences these pathways in a manner similar to IGF-I. By exploiting specific chemical inhibitors of the MAPK/ERK and PI3K/Akt signaling pathways, UO126 and Ly294002, respectively, we demonstrate that Shh-induced Akt phosphorylation, but not that of MAPK/ERK, is required for its promotive effects on muscle cell proliferation and differentiation. Taken together, we suggest that Shh acts in an autocrinic manner in adult myoblasts, and provide first evidence of a role for PI3K/Akt in Shh signaling during myoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号