首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the use of vitamin E supplements has been associated with a reduction in coronary events, assumed to be due to lowered lipid peroxidation, there are no previous long-term clinical trials into the effects of vitamin C or E supplementation on lipid peroxidation in vivo. Here, we have studied the long-term effects of vitamins C and E on plasma F2-isoprostanes, a widely used marker of lipid peroxidation in vivo. As a study cohort, a subset of the “Antioxidant Supplementation in Atherosclerosis Prevention” (ASAP) study was used. ASAP is a double-masked placebo-controlled randomized clinical trial to study the long-term effect of vitamin C (500 mg of slow release ascorbate daily), vitamin E (200 mg of d-α-tocopheryl acetate daily), both vitamins (CellaVie®), or placebo on lipid peroxidation, atherosclerotic progression, blood pressure and myocardial infarction (n = 520 at baseline). Lipid peroxidation measurements were carried out in 100 consecutive men at entry and repeated at 12 months. The plasma F2-isoprostane concentration was lowered by 17.3% (95% CI 3.9–30.8%) in the vitamin E group (p = 0.006 for the change, as compared with the placebo group). On the contrary, vitamin C had no significant effect on plasma F2-isoprostanes as compared with the placebo group. There was also no interaction in the effect between these vitamins. In conclusion, long-term oral supplementation of clinically healthy, but hypercholesterolemic men, who have normal vitamin C and E levels with a reasonable dose of vitamin E lowers lipid peroxidation in vivo, but a relatively high dose of vitamin C does not. This observation may provide a mechanism for the observed ability of vitamin E supplements to prevent atherosclerosis.  相似文献   

2.
We have investigated the protective effect of vitamin C and E together supplementation on oxidative stress and antioxidant enzyme activities in the liver of streptozotocin-induced diabetic rats, unsupplemented diabetic and control rats. We also determined the levels of both the vitamins and oxidative stress in plasma. Vitamin supplementation in diabetic rats lowered plasma and liver lipid peroxidation, normalised plasma vitamin C levels and raised vitamin E above normal levels. In liver, the activity of glutathione peroxidase was raised significantly and that of glutathione-S-transferase was normalised by vitamin supplementation in diabetic rats. The levels of lipid peroxidation products in plasma and liver of vitamin-supplemented diabetic rats and activities of antioxidant enzymes in liver suggest that these vitamins reduce lipid peroxidation by quenching free radicals.  相似文献   

3.
Oxidative stress is elevated in obesity, and may be a major mechanism for obesity-related diseases. Nonsmokers (n=396) were randomized to 1000 mg/day vitamin C, 800 IU/day vitamin E, or placebo, for 2 months. Treatment effect was examined in multiple regression analyses using an intention-to-treat approach. Vitamin C (P=0.001) and vitamin E (P=0.043) reduced plasma F2-isoprostanes. In the overall sample, changes from baseline were +6.8, -10.6, and -3.9% for placebo, vitamin C, and vitamin E groups, respectively. However, a significant interaction with baseline F2-isoprostane was found. When baseline F2-isoprostane was >50 microg/mL, vitamin C reduced F2-isoprostane by 22% (P=0.01). Vitamin E reduced it by 9.8% (P=0.46). Below that cut point, neither treatment produced further reductions. F2-isoprostane>50 microg/mL was strongly associated with obesity, and was present in 42% of the sample. Change in malondialdehyde concentration was minimal. These findings suggest a role for vitamin C in reducing lipid peroxidation. Future research on effects of vitamins C or E on plasma F2-isoprostane should limit participants to those with baseline levels >50 mug/mL. Further studies are needed to establish whether treatment with vitamins C or E in persons with concentrations above that cut point could slow the development of cardiovascular disease.  相似文献   

4.
We assessed oxidative stress in three different clinical conditions: smoking, human immunodeficiency virus (HIV) infection, and inflammatory bowel disease, using breath alkane output and other lipid peroxidation parameters such as plasma lipid peroxides (LPO) and malondialdehyde (MDA). Antioxidant micronutrients such as selenium, vitamin E, C, beta-carotene and carotenoids were also measured. Lipid peroxidation was significantly higher and antioxidant vitamins significantly lower in smokers compared to nonsmokers. Beta-carotene or vitamin E supplementation significantly reduced lipid peroxidation in that population. However, vitamin C supplementation had no effect. In HIV-infected subjects, lipid peroxidation parameters were also elevated and antioxidant vitamins reduced compared to seronegative controls. Vitamin E and C supplementation resulted in a significant decrease in lipid peroxidation with a trend toward a reduction in viral load. In patients with inflammatory bowel disease, breath alkane output was also significantly elevated when compared to healthy controls. A trial with vitamin E and C is underway. In conclusion, breath alkane output, plasma LPO and MDA are elevated in certain clinical conditions such as smoking, HIV infection, and inflammatory bowel disease. This is associated with lower levels of antioxidant micronutrients. Supplementation with antioxidant vitamins significantly reduced these lipid peroxidation parameters. The results suggest that these measures are good markers for lipid peroxidation.  相似文献   

5.
Several cardiovascular risk factors are characterized by the coexistence of low-grade inflammation, enhanced oxidative stress and lipid peroxidation. It has been hypothesized that F2-isoprostanes, a product of in vivo lipid peroxidation, may transduce the effects of metabolic and hemodynamic abnormalities into increased cardiovascular risk. Thus, the formation of these compounds, including urinary 8-iso-Prostaglandin (PG) F2alpha, has been investigated in clinical settings putatively associated with oxidant stress. Enhanced lipid peroxidation together with increased in vivo platelet activation have been found in association with the major cardiovascular risk factors. Thus, F2-isoprostanes may transduce the effects of oxidant stress associated with complex metabolic disorders into specialized forms of cellular activation. In particular, the low-grade inflammatory state characterizing metabolic disorders such as obesity, hypercholesterolemia, type 2 diabetes mellitus, and homozygous homocystinuria may be the primary trigger of thromboxane-dependent platelet activation mediated, at least in part, through enhanced lipid peroxidation. Moreover, oxidative stress may promote endothelial dysfunction through increased production of reactive oxygen species that inactivate nitric oxide. Accumulation and activation of leukocytes plays a key role in atherosclerosis and its complications. Interestingly, neutrophil adhesion induced by minimally modified low-density lipoproteins is mainly mediated by F2-isoprostanes. Although epidemiological studies suggest an inverse relationship between antioxidant vitamin intake and cardiovascular disease, several clinical trials have obtained conflicting results on the effects of vitamin E supplementation on the risk of cardiovascular events. On the other hand, the use of F2-isoprostane formation as a biochemical end-point for dose-finding studies of vitamin E supplementation has helped clarifying the unique features of its pharmacodynamic effects on lipid peroxidation. This information could be extremely valuable in the selection of the appropriate patient subgroups that may benefit from antioxidant interventions.  相似文献   

6.
This study investigated the supplementation with vitamin C or/and E on the antioxidant system in hemodialysis patients. Thirty-eight hemodialysis patients (27 males and 11 females) with the average of 60 years old were divided into four groups: placebo (400 mg starch/time), vitamin C (400 mg/time)-, vitamin E (400 mg d,l- alpha-tocopheryl acetate/time)-, and vitamin C (400 mg/time) + E (400 mg d,l- alpha-tocopheryl acetate/time)-supplemented groups for 6-week supplementation. The patients orally received three capsules of placebo or antioxidant(s) three times a week after finishing hemodialysis. Thirty-six healthy subjects (22 males and 14 females) with the average of 58 years old were recruited as the control group. Hemodialysis patients significantly decreased plasma vitamin C by 32%, erythrocyte glutathione by 26%, and plasma total antioxidant status by 9%, but increased plasma lipid peroxide levels by 102% compared with the control group at the baseline. The levels of plasma vitamin C and total antioxidant status significantly decreased by 24% and 18%, respectively, from the post-dialysate compared with those from the pre-dialysate. At week 6, vitamin C + E-supplemented group significantly increased plasma vitamin C and E, erythrocyte glutathione, and plasma antioxidant status, and inhibited plasma lipid peroxides compared with placebo group. Additionally, vitamin C + E-supplemented group had higher plasma vitamin C, vitamin E, and total antioxidant status, and lower plasma lipid peroxides than placebo group even at least 2 weeks after the termination of the supplements. Therefore, antioxidant vitamin supplements could improve antioxidant status and decrease lipid peroxides of hemodialysis patients.  相似文献   

7.
The decreased oxidizability of plasma lipoproteins is related to the increased vitamin E intake and its association with a relatively lower incidence of coronary heart disease has been proposed. We investigated the effect of the in vivo vitamin E supplementation on the oxidizability of serum lipids in patients with ischemic heart disease and a moderate hypercholesterolemia. Thirty-two patients (16 males and 16 postmenopausal women) participated in this placebo-controlled, randomized trial. They were treated with 400 mg vitamin E/day for 6 weeks. The copper-induced serum lipid oxidizability ex vivo was assessed by measuring conjugated diene formation at 245 nm. We also measured vitamin E, malondialdehyde (MDA) and uric acid concentrations in the plasma. Because of observed significant differences in parameters of serum lipid oxidizability (lag time and maximal rate of oxidation), plasma alpha-tocopherol and MDA levels between male patients and postmenopausal women supplemented with vitamin E, the results were compared between both genders. Six weeks of vitamin E supplementation significantly increased plasma vitamin E levels (by 87 %) in male patients but in postmenopausal women only by 34 %. Concomitantly with increased plasma levels of vitamin E the decrease in plasma MDA levels was observed in male patients (decrease by 20 %; p=0.008), but in postmenopausal women the decrease did not attain statistical significance. Plasma uric acid levels were not apparently changed in placebo or vitamin E supplemented groups of patients. The changes in ex vivo serum lipid oxidizability after vitamin E, supplementation have shown a significantly prolonged lag time (by 11 %; p=0.048) and lowered rate of lipid oxidation (by 21 %; p=0.004) in male patients in comparison with postmenopausal women. Linear regression analysis revealed a significant correlation between plasma vitamin E levels and the lag time (r=0.77; p=0.03) and the maximal rate of serum lipid oxidation (r=-0.70; p=0.05) in male patients. However, in postmenopausal women the correlations were not significant. We conclude that 400 mg vitamin E/day supplementation in patients with ischemic heart disease and a moderate hypercholesterolemia influenced favorably ex vivo serum lipid oxidation of male patients when compared with postmenopausal women. The observed differences between both genders could be useful in the selection of the effective vitamin E doses in the prevention of coronary heart disease.  相似文献   

8.
The oxidation hypothesis of atherogenesis has been the focus of much research over the past 2 decades. However, randomized placebo-controlled trials evaluating the efficacy of vitamin E in preventing cardiovascular events in aggregate have failed to show a beneficial effect. Implicit in these trials is that the dose of vitamin E tested effectively suppressed oxidative stress status but this was never determined. We defined the dose-dependent effects of vitamin E (RRR-alpha-tocopherol) to suppress plasma concentrations of F2-isoprostanes, a biomarker of free radical-mediated lipid peroxidation, in participants with polygenic hypercholesterolemia and enhanced oxidative stress, a population at risk for cardiovascular events. A time-course study was first performed in participants supplemented with 3200 IU/day of vitamin E for 20 weeks. A dose-ranging study was then performed in participants supplemented with 0, 100, 200, 400, 800, 1600, or 3200 IU/day of vitamin E for 16 weeks. In the time-course study, maximum suppression of plasma F2-isoprostane concentrations did not occur until 16 weeks of supplementation. In the dose-ranging study there was a linear trend between the dosage of vitamin E and percentage reduction in plasma F2-isoprostane concentrations which reached significance at doses of 1600 IU (35+/-2%, p<0.035) and 3200 IU (49+/-10%, p<0.005). This study provides information on the dosage of vitamin E that decreases systemic oxidant stress in vivo in humans and informs the planning and evaluation of clinical studies that assess the efficacy of vitamin E to mitigate disease.  相似文献   

9.
This double blind randomized controlled trial was designed to investigate whether short-term vitamin E treatment at doses of 500 and 1000 mg/day, compared to placebo, decreased urinary F(2)-isoprostanes and improved the microvascular perfusion after cold exposure in patients suffering from SSc. Thirty-three eligible patients were randomly assigned in a 1.3:1:1 ratio to receive placebo, vitamin E 500 mg, or vitamin E 1000 mg daily for 3 weeks. Clinical examination, analysis of plasma vitamin E, urinary F(2)-isoprostane levels and a whole body cooling test were performed at baseline and after a 3-week period of treatment. Urinary 15-F(2t)-IsoP levels and cutaneous blood flow variation in response to cold did not significantly differ before versus after treatment in any group. Furthermore, no difference was found between groups after 3 weeks of treatment. We show that 3-week vitamin E treatment at doses of 500 or 1000 mg/day neither decreases the basal rate of lipid peroxidation nor improves microvascular perfusion after cold exposure. These data does not support the need for phase III clinical trials to test efficacy of vitamin E in SSc.  相似文献   

10.
To assess the effects of short-term and long-term vitamin C supplementation in humans on plasma antioxidant status and resistance to oxidative stress, plasma was obtained from 20 individuals before and 2h after oral administration of 2g of vitamin C, or from eight subjects enrolled in a vitamin C depletion-repletion study using increasing daily doses of vitamin C from 30 to 2500 mg. Plasma concentrations of ascorbate, but not other physiological antioxidants, increased significantly after short-term supplementation, and increased progressively in the long-term study with increasing vitamin C doses of up to 1000 mg/day. Upon incubation of plasma with a free radical initiator, ascorbate concentrations were positively correlated with the lag phase preceding detectable lipid peroxidation. We conclude that vitamin C supplementation in humans dose-dependently increases plasma ascorbate concentrations and, thus, the resistance of plasma to lipid peroxidation ex vivo. Plasma and body saturation with vitamin C in humans appears desirable to maximize antioxidant protection and lower risk of oxidative damage.  相似文献   

11.
To determine if 6 weeks of supplementation with vitamins E and C could alleviate exercise-induced lipid peroxidation and inflammation, we studied 22 runners during a 50 km ultramarathon. Subjects were randomly assigned to one of two groups: (1) placebos (PL) or (2) antioxidants (AO: 1000 mg vitamin C and 300 mg RRR-alpha-tocopheryl acetate). Blood samples were obtained prior to supplementation (baseline), after 3 weeks of supplementation, 1 h pre-, mid-, and postrace, 2 h postrace and for 6 days postrace. Plasma levels of alpha-tocopherol (alpha-TOH), ascorbic acid (AA), uric acid (UA), F2-isoprostanes (F2-IsoPs), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and C-reactive protein (CRP) were measured. With supplementation, plasma alpha-TOH and AA increased in the AO but not the PL group. Although F2-IsoP levels were similar between groups at baseline, 28 +/- 2 (PL) and 27 +/- 3 pg/ml (AO), F2-IsoPs increased during the run only in the PL group (41 +/- 3 pg/ml). In PL women, F2-IsoPs were elevated postrace (p <.01), but returned to prerace concentrations by 2 h postrace. In PL men, F2-IsoP concentrations were higher postrace, 2 h postrace, and 1, 2, 3, 4, and 6 days postrace (PL vs. AO group, each p <.03). Markers of inflammation were increased dramatically in response to the run regardless of treatment group. Thus, AO supplementation prevented endurance exercise-induced lipid peroxidation but had no effect on inflammatory markers.  相似文献   

12.
Smoking can accelerate the consumption of the stored antioxidant vitamins and increase the oxidative stress in the hyperlipidemic patients. The study investigated the effects of combined beta-carotene, vitamin C, and vitamin E on plasma antioxidant levels, erythrocyte antioxidative enzyme activities, and LDL lipid peroxides. Male hyperlipidemic smokers (35-78 years old) were randomly divided into two antioxidant supplemented groups: intervention 1 (I1, n = 22) (15 mg beta-carotene/day, 500 mg vitamin C/day, and 400 mg alpha-tocopherol equivalent/day) and intervention 2 (I2, n = 20) (30 mg beta-carotene/day, 1000 mg vitamin C/day, and 800 mg alpha-tocopherol equivalent/day). After 6-week supplementation, plasma beta-carotene, vitamin C, vitamin E, and erythrocyte glutathione levels increased significantly by 200%, 98%, 129%, and 39%, respectively, in the I1 group, and by 209%, 216%, 197%, and 32%, respectively, in the I2 group. Plasma Fe(+2) concentrations and Fe(+2)/Fe(+3) decreased significantly in both groups. Except erythrocyte glutathione peroxidase activity in the I1 group, erythrocyte catalase, glutathione peroxidase, and superoxide dismutase activities increased significantly in both groups. Lipid peroxides in LDL decreased significantly by 56% and 72% in the I1 and I2 groups, respectively. However, the levels of plasma iron, erythrocyte glutathione, and LDL lipid peroxides, and the activities of erythrocyte antioxidative enzymes did not differ between two groups. In conclusion, combined antioxidant supplements increased plasma antioxidant levels and antioxidative enzyme activities, and lowered LDL lipid peroxides in male hyperlipidemic smokers. Higher dosage of the supplements did not have an additive effect.  相似文献   

13.
The hypothesis that vitamin C interacts with vitamin E in vivo was investigated in juvenile lake sturgeon. Ten-month old lake sturgeon were fed diets supplemented with either 0 or 1250 mg ascorbic acid/kg diet concomitantly with either 0 or 200 mg α tocopherol/kg diet for 7 weeks at 17°C. Dietary vitamin C supplement resulted in significant increases of ascorbate concentrations in the posterior kidney and liver of sturgeon. Dietary vitamin E omission affected liver concentrations of α-tocopherol (10.0 ± 4.5 μg/g) in comparison to sturgeon fed a diet supplemented with vitamin E and vitamin C (99.5 ± 22.9 μg/g). Dietary vitamin C supplement decreased liver α-tocopherol concentration in vitamin E-deprived sturgeon. Also, vitamin E supplement lowered posterior kidney and liver ascorbic acid concentrations in vitamin C-deprived sturgeon. Gulonolactone oxidase and dehydroascorbic acid reductase activities were stimulated in groups fed vitamin C. Thiobarbituric acid-reactive substances concentrations (an indicator of lipid peroxidation) were higher in sturgeon fed either of vitamins as compared to sturgeon deprived of both vitamins. The results suggested that large doses of vitamins C and E may be prooxidant in vivo.  相似文献   

14.
This study was conducted to determine the effects of vitamin C (L-ascorbic acid) and vitamin E (alpha-tocopherol acetate) on serum concentrations of lipid peroxidation (MDA) and triiodothyronine (T3), thyroxine (T4), adrenocorticotropic hormone (ACTH), and some metabolite and mineral in laying hens reared at high ambient temperatures ranging from 25 degrees C to 35 degrees C. One hundred twenty laying hens (18 wk old; Hy-Line) were divided into 4 groups, 30 hens per group. The laying hens were fed either a basal diet (control) or the basal diet supplemented with either 250 mg of L-ascorbic acid/kg of diet (vitamin C), 250 mg of alpha-tocopherol acetate/kg of diet (vitamin E), or 250 mg of L-ascorbic acid plus 250 mg alpha-tocopherol acetate/kg of diet (combination). Separately or as a combination vitamins C and E increased serum vitamin C and vitamin E concentrations (p < 0.001) but decreased serum MDA concentration (p < 0.05). Serum concentrations of vitamin E and vitamin C were found highest but serum MDA concentration was lowest in the combination group. Supplemental vitamins C and E either separately or in a combination increased serum T3 and T4 concentrations (p < 0.05), whereas decreased serum ACTH concentration (p < 0.01). Serum glucose and cholesterol concentrations decreased, whereas serum protein concentration increased (p < 0.05) when vitamins C and E singly or together were added to the diet. Vitamin C and vitamin E supplementation resulted in an increase in serum concentrations of Ca, P, and K (p < 0.01) but a decrease in serum concentration of Na (p < 0.05). The results of the present study suggest that supplemental vitamin C and vitamin E alter serum lipid peroxidation, vitamin C, vitamin E and metabolite status, and diets supplemented with a combination of these two vitamins offer a good management practice in laying hens reared at high temperatures. In addition, the results suggest that dietary vitamin C and vitamin E act synergistically.  相似文献   

15.
《Free radical research》2013,47(6):485-493
Forty-five mutant male ODs rats, unable to synthesize ascorbic acid, were fed nine diets containing 5, 50 or 250 mg of vitamin E/kg diet and 150,300 or 900 mg of vitamin C/kg diet for 21 days. The concentrations of vitamins C and E increased in liver and plasma in relation to the level of these vitamins in the diet. Vitamin C dietary supplementation increased the plasma vitamin E content at low levels of vitamin E intake, supporting the concept of an in vivo synergism between both antioxidant vitamins. Vitamin C, at the dietary levels studied, did not affect the lipid peroxidation. Vitamin E decreased liver and plasma endogenous levels of thiobarbituric acid-reactive substances and liver sensitivity to non-enzymatic lipid peroxidation. This was confirmed by a highly specific assay of lipid hydroperoxides using high performance liquid chromatography with chemiluminescence detection. The hepatic concentration of both phosphatidylcholine and phosphatidylethanolamine hydroperoxides decreased as the vitamin E content of the diet increased. The results show for the first time the capacity of vitamin E to protect against peroxidation of major phospho-lipids in vivo under basal unstressed conditions.  相似文献   

16.
The protective effect of vitamin E and reduced glutathione (GSH) against lipid peroxidation in boar semen plasma was studied. The lipid peroxidation, measured by the test for thiobarbituric acid reactive substances (TBARS), doubled in the presence of the lipid peroxidation Fe2+-sodium ascorbate-inducing system. The ascorbate-induced TBARS were inhibited by about 62% through the water-soluble vitamin E analog (TROLOX) and about 57% by GSH. In the in vivo experiments, 7 wk of oraldl-α-tocopherol acetate (1000 IU/d/animal) administration caused a significant fall in the level of the semen plasma TBARS, from 2.2±0.09 to 1.2±0.13 nmol MDA/mL. The semen plasma superoxide dismutase (SOD) and GSSG tended to increase with the time of vitamin E administration, but the increment did not reach a significant level by the seventh week. The vitamin E supplementation significantly increased the number of spermatozoa per 1 cm3 of ejaculate. The protective role of vitamin E and GSH with respect to boar semen against fatty acid peroxidation and a positive influence of vitamin E supplementation on semen quality have been evidenced.  相似文献   

17.
Because increased oxidation is an important feature of Alzheimer's disease (AD) and low concentrations of antioxidant vitamins C and E have been observed in cerebrospinal fluid (CSF) of AD patients, supplementation with these antioxidants might delay the development of AD. Major targets for oxidation in brain are lipids and lipoproteins. We studied whether supplementation with antioxidative vitamins E and C can increase their concentrations not only in plasma but also in CSF, and as a consequence decrease the susceptibility of lipoproteins to in vitro oxidation. Two groups, each consisting of 10 patients with AD, were for 1 month supplemented daily with either a combination of 400 IU vitamin E and 1000 mg vitamin C, or 400 IU vitamin E alone. We found that supplementation with vitamin E and C significantly increased the concentrations of both vitamins in plasma and CSF. Importantly, the abnormally low concentrations of vitamin C were returned to normal level following treatment. As a consequence, susceptibility of CSF and plasma lipoproteins to in vitro oxidation was significantly decreased. In contrast, the supplementation with vitamin E alone significantly increased its CSF and plasma concentrations, but was unable to decrease the lipoprotein oxidizability. These findings document a superiority of a combined vitamin E + C supplementation over a vitamin E supplementation alone in AD and provide a biochemical basis for its use.  相似文献   

18.
It has been claimed that coenzyme Q10 (Q10) would be an effective plasma antioxidant since it can regenerate plasma vitamin E. To test separate effects and interaction between Q10 and vitamin E in the change of plasma concentrations and in the antioxidative efficiency, we carried out a double-masked, double-blind clinical trial in 40 subjects with mild hypercholesterolemia undergoing statin treatment. Subjects were randomly allocated to parallel groups to receive either Q10 (200 mg daily), d-alpha-tocopherol (700 mg daily), both antioxidants or placebo for 3 months. In addition we investigated the pharmacokinetics of Q10 in a separate one-week substudy. In the group that received both antioxidants, the increase in plasma Q10 concentration was attenuated. Only vitamin E supplementation increased significantly the oxidation resistance of isolated LDL. Simultaneous Q10 supplementation did not increase this antioxidative effect of vitamin E. Q10 supplementation increased and vitamin E decreased significantly the proportion of ubiquinol of total Q10, an indication of plasma redox status in vivo. The supplementations used did not affect the redox status of plasma ascorbic acid. In conclusion, only vitamin E has antioxidative efficiency at high radical flux ex vivo. Attenuation of the proportion of plasma ubiquinol of total Q10 in the vitamin E group may represent in vivo evidence of the Q10-based regeneration of the tocopheryl radicals. In addition, Q10 might attenuate plasma lipid peroxidation in vivo, since there was an increased proportion of plasma ubiquinol of total Q10.  相似文献   

19.
Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitaminE, (β-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n=27) was compared to a control group (n=27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90±5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p<0.05) (3.62±0.36 vs 3.01±0.37 mmol/L). No significant changes were observed in plasma trace elements and red blood cell antioxidant metalloenzymes. Furthermore, the α-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.  相似文献   

20.
The anti-inflammatory properties of n-3 polyunsaturated fatty acids (n-3 PUFA) have suggested a potential role of these nutrients in dietary modification for prevention of allergic disease in early life. As oxidative stress is known to modify antigen presenting cell (APC) signalling and resulting immune responses, we examined the effects of maternal n-3 PUFA supplementation in pregnancy on markers of oxidative stress and APC function in neonates at high risk of allergy. Eighty-three pregnant atopic women were randomised to receive 4 g daily of either fish oil (n = 40) or olive oil (n = 43) capsules in a controlled trial from 20 weeks gestation until delivery. Plasma (cord blood) and urinary F2-isoprostanes were measured as markers of lipid peroxidation. Cord erythrocyte fatty acids and markers of APC function (HLA-DR expression and cytokine responses) were measured and related to levels of plasma F2-isoprostanes. Maternal fish oil supplementation lowered plasma (p < 0.0001) and urinary (p = 0.06) F2-isoprostanes. HLA-DR expression on APC was not different between the groups. In multiple regression analysis, 28.8% of the variance in plasma F2-isoprostanes was explained by positive relationships with erythrocyte arachidonic acid (AA) and monocyte HLA-DR expression and a negative relationship with erythrocyte eicosapentaenoic acid (EPA). This study shows that maternal supplementation with fish oil can attenuate neonatal lipid peroxidation. Clinical follow-up of these infants will help to determine if there are sustained effects on postnatal oxidative stress and expression of allergic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号