首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of dust ion-acoustic solitons is analyzed in a wide range of dusty plasma parameters. The cases of both a positive dust grain charge arising due to the photoelectric effect caused by intense electromagnetic radiation and a negative grain charge established in the absence of electromagnetic radiation are considered. The ranges of plasma parameters and Mach numbers in which ??conservative?? (nondissipative) solitons can exist are determined. It is shown that, in dusty plasma with negatively charged dust grains, both compression and rarefaction solitons can propagate, whereas in plasma with positively charged dust grains, only compression solitons can exist. The evolution of soliton-like compression and rarefaction perturbations is studied by numerically solving the hydrodynamic equations for ions and dust grains, as well as the equation for dust grain charging. The main dissipation mechanisms, such as grain charging, ion absorption by dust grains, momentum exchange between ions and dust grains, and ion-neutral collisions are taken into account. It is shown that the amplitudes of soliton-like compression and rarefaction perturbations decrease in the course of their evolution and their velocities (the Mach numbers) decrease monotonically in time. At any instant of time, the shape of an evolving soliton-like perturbation coincides with the shape of a conservative soliton corresponding to the current value of the Mach number. It is shown that, after the interaction between any types of soliton-like perturbations, their velocities and shapes are restored (with a certain phase shift) to those of the corresponding perturbations propagating without interaction; i.e., they are in fact weakly dissipative solitons.  相似文献   

2.
The paper presents an introductory review of the basic physical processes in dusty plasmas. The topics to be addressed are dust charging, forces acting on dust grains, interaction between dust grains, and dust-plasma structures.  相似文献   

3.
The propagation of ion-acoustic solitons in a warm dusty plasma containing two ion species is investigated theoretically. Using an approach based on the Korteveg de Vries equation, it is shown that the critical value of the negative ion density that separates the domains of existence of compression and rarefaction solitons depends continuously on the dust density. A modified Korteveg de Vries equation for the critical density is derived in the higher order of the expansion in the small parameter. It is found that the nonlinear coefficient of this equation is positive for any values of the dust density and the masses of positive and negative ions. For the case where the negative ion density is close to its critical value, a soliton solution is found that takes into account both the quadratic and cubic nonlinearities. The propagation of a solitary wave of arbitrary amplitude is investigated by the quasi-potential method. It is shown that the range of dust densities around the critical value within which solitary waves with positive and negative potentials can exist simultaneously is relatively wide.  相似文献   

4.
5.
In the presence of ionization processes, a homogeneous equilibrium dust distribution often appears as a balance between plasma generation by ionization and plasma absorption by dust particles. It is shown that such equilibrium, often present in laboratory plasmas, is generally unstable against the formation of dust clumps separated by dust-free regions (dust voids). The driving force that separates an initially homogeneous dusty plasma into dust clumps and dust voids is the drag force produced by ions flowing out from the regions with reduced dust density. The lower the dust density, the lower the electron absorption by dust particles and the larger the ionization rate proportional to the electron density. An increase in the ion drag force leads to a further decrease in the dust density and, thus, drives the instability. In the nonlinear stage, the instability creates structures—dust clouds separated by dust voids. The dependence of the instability growth rate on the wavenumber (or, in other words, on the size of the dust-free and dust-containing regions) is investigated. It is shown that, for sufficiently small wavenumbers, a homogeneous distribution is always unstable. An analogy with a gravitational-like instability related to shadowing of the plasma flux by dust particles is pointed out. This effect, which is due to collective shadowing of the plasma flux, dominates the shadowing by individual dust particles discussed previously. Similar to the usual gravitational instability, perturbations with the largest scales are always unstable. Contrary to the usual gravitational instability, the largest growth rate corresponds not to the largest possible scale but to the size close to the mean free path of plasma particles colliding with dust particles. A special investigation is undertaken to determine the influence of the ion-neutral collisions on the growth rate of the instability.  相似文献   

6.
The problem of the expansion of a magnetic field in a complex (e.g., dusty) plasma is considered, with a focus on the effects produced by the independent transport of charged components that does not break plasma quasineutrality. Solutions to a set of nonlinear equations are obtained for different initial and boundary conditions. In particular, it is shown that the field rapidly penetrates into the plasma when the dust is charged negatively and does not penetrate at all when the dust charge is positive.  相似文献   

7.
Analytic expressions for pair electron-grain and ion-grain radial distribution functions are derived under the assumption of a short-range binary interaction between mobile particles and an immobile charged grain, which is treated as a point particle.  相似文献   

8.
The effect of microwave radiation on a complex plasma produced by an external ionizer is studied using numerical simulations. It is shown that, as the radiation intensity increases, the scattering of the incident radiation by charged metal grains is enhanced and radiation at the second harmonic of the incident radiation appears in the scattered spectrum. This effect is associated with the grain charge oscillations caused by the nonlinear action of the microwave field. It is found that, under the action of strong microwave radiation, the grain charge can increase by one order of magnitude. It is shown that, when the microwave intensity is high enough, the distribution of the electric field near a dust grain is shown to change so radically that the field component normal to the grain surface can even change its sign.  相似文献   

9.
The time characteristics of grain charging, namely, the relaxation time of the steady grain charge and the charge fluctuations of grains of different sizes, are computed from particle simulations. The results obtained are compared with some theoretical predictions (primarily those derived from the drift-diffusion model). The simulations are carried out for nonmoving and moving two-temperature argon plasmas.  相似文献   

10.
Theoretical investigation has been made on obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a magnetized dusty plasma which consists of non-inertial adiabatic electron and ion fluids, and inertial negatively as well as positively charged adiabatic dust fluids. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness, etc.) of such DA solitary structures are significantly modified by adiabaticity of plasma fluids, opposite polarity dust components, and the obliqueness of external magnetic field. The SWs have been changed from compressive to rarefactive depending on the value of μ (a parameter determining the number of positive dust present in this plasma model). The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

11.
12.
Charged particle transport and kinetic processes in a low-temperature dusty plasma are numerically simulated. Dust grains are represented as spheres with a given radius. The self-consistent electric field in the plasma surrounding a charged dust grain is calculated taking into account the perturbations of plasma quasineutrality near the grains. It is shown that applying an external electric field leads to a rearrangement of the plasma space charge and a break of the spherical symmetry of the electron and ion density distributions around the grain. The mutual influence of two identical charged dust grains is considered, and the energy of the electrostatic interaction between the grains is calculated. It is shown that this energy has a minimum at a certain finite distance between the grains.  相似文献   

13.
A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the equilibrium between plasma components when analyzing equilibrium structures. The effect of plasma screening nonlinearity on both the diffusion processes and the forces of dust drag by plasma fluxes is analyzed. It is shown how self-organized dust structures form in these processes. In the limit of very small dust grain charges, the forces acting on the dusty plasma components and the set of basic equations for stationary dust structures (with allowance for nonlinear screening) take a standard form. New qualitative effects, such as the suppression of diffusion due to ion scattering from dust grains and the formation of structures of different configurations, are described. A detailed comparison with previous results is performed. It is shown that the solution of basic nonlinear equations for dust structures yields new qualitative effects. A number of new effects to be studied in future dusty plasma experiments with the formation of structures in spherical chambers are predicted (it is assumed that diffusion will play a significant role under microgravity conditions). Recent ground-based experiments, as well as experiments carried out onboard the International Space Station, directly confirm the nonlinear character of screening and the significant role played by this nonlinearity in the structurization of dusty plasma. Experiments on the formation of structures consisting of smaller dust grains within structures formed of larger grains are discussed. It is shown that those experiments can be interpreted only using the concept of nonlinear screening.  相似文献   

14.
The oblique propagation of nonlinear periodic ion-acoustic waves in magnetized dusty plasma is investigated. The equations describing the dynamics of the wave potential in the first and second orders of the perturbation theory are derived, and their nonsecular periodic solutions are found. The average nonlinear ion flux caused by the propagation of a cnoidal wave is estimated. The magnitude and direction of the ion flux are analyzed as functions of the dust charge density and the angle between the wave propagation direction and the magnetic field.  相似文献   

15.
Results are presented from the experimental studies and numerical simulations of the behavior of dust grains in the plasma of an inductive RF discharge. The experiments were carried out with neon at a pressure of 25–500 Pa and with 1.87-μm melamine formaldehyde grains. The discharge was excited by a ring inductor supplied from a generator operating at a 100-MHz frequency. The effective dust-grain interaction potential used in numerical simulations involved the spatial dependence of the grain charge on the plasma floating potential, grain-interaction anisotropy resulting from the focusing of the drift ion current by the negatively charged grains, and specific features of the shielding of the dust grains by the plasma electrons and ions recombining both in the plasma bulk and on the grain surface. The results of Monte Carlo simulations show that the dust grains form specific filament structures observed experimentally in the plasma of an inductive electrodeless discharge. __________ Translated from Fizika Plazmy, Vol. 26, No. 5, 2000, pp. 445–454. Original Russian Text Copyright ? 2000 by Zobnin, Nefedov, Sinel’shchikov, Sinkevich, Usachev, Filinov, Fortov.  相似文献   

16.
The propagation of nonlinear periodic ion acoustic waves in a dusty plasma is considered for conditions in which the coefficient in the nonlinear equation that describes the quadratic nonlinearity of the medium is zero. An equation that accounts for the cubic nonlinearity of the system is derived, and its solution is found. The dependence of the phase velocity of a cnoidal wave on its amplitude and modulus is determined. In describing the effect of higher order nonlinearities on the properties of a dust ion acoustic wave, two coupled equations for the first- and second-order potentials are obtained. It is shown that the nonlinear ion flux generated by a cnoidal wave propagating in a medium with a cubic nonlinearity is proportional to the fourth power of the wave amplitude.  相似文献   

17.
The linear propagation of the dust-acoustic (DA) waves in a nonuniform adiabatic dusty plasma, which consists of inertialess adiabatic electrons, inertialess adiabatic ions, and inertial negatively charged dust by taking into account the effects of polarization force, is theoretically investigated. It is found that the linear dispersion properties of the DA waves are significantly modified by the dust density nonuniformity, adiabaticity of electrons and ions, and the effects of the polarization force. It is shown that the phase speed of the DA waves is increased with the increase of adiabaticity of electrons and ions but decreased with the increase of the effects of polarization force. It is also shown that the dust density is enhanced with the increase of adiabatic index but depleted with the increase of polarization force. The scenarios relevant to dust-ion plasma in space environments are briefly addressed.  相似文献   

18.
The properties of magnetosonic waves that propagate perpendicularly to the external magnetic field in a polydisperse dusty plasma and the frequencies of which are about the dust cyclotron frequency are analyzed. A dispersion relation containing integrals of functions of the dust grain radius is derived and investigated as a function of the parameters characterizing the polydisperse properties of dust. It is found that, in a polydisperse dusty plasma, the low-frequency magnetosonic mode splits into two branches. The first, lower frequency branch has a cutoff, while the higher frequency branch has a resonance. Between the two branches, there is a forbidden frequency range within which electromagnetic waves cannot propagate perpendicular to the magnetic field. The width of the forbidden frequency range is determined as a function of the slope of the distribution function of dust grains over radii and the interval within which the dust grain radii lie.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号