首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factors influencing transfer of an intron — containing -glucuronidase gene to apple leaf explants were studied during early steps of an Agrobacterium tumefaciens-mediated transformation procedure. The gene transfer process was evaluated by counting the number of -glucuronidase expressing leaf zones immediately after cocultivation, as well as by counting the number of -glucuronidase expressing calli developing on the explants after 6 weeks of postcultivation in the presence of 50 mg/l kanamycin. Of three different tested disarmed A. tumefaciens strains, EHA101(pEHA101) was the most effective for apple transformation. Cocultivation of leaf explants with A. tumefaciens on a medium with a high cytokinin level was more conducive to gene transfer than cocultivation on media with high auxin concentrations. Precultivation of leaf explants, prior to cocultivation, slightly increased the number of -glucuronidase expressing zones measured immediately after cocultivation, but it drastically decreased the number of transformed calli appearing on the explants 6 weeks after infection. Other factors examined were: Agrobacterium cell density during infection, bacterial growth phase, nature of the carbon source, explant age, and explant genotype.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - CaMV35S 35S RNA of cauliflower mosaic virus - EDTA ethylenediaminetetraacetate - FeNaEDTA ethylenediaminetetraacetate ferric-sodium salt - GusA -glucuronidase - gusA ß-glucuronidase gene of Escherichia coli - gusA-intron ß-glucuronidase gene containing an intron in the coding region - IBA indole butyric acid - 2iP N6-2-isopentenyl adenine - NAA naphthaleneacetic acid - nptII neomycinphosphotransferase II gene - X-Gluc 5-bromo-4-chloro-3-indolyl ß-D-glucuronide  相似文献   

2.
A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database () to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15 cM.E. Silfverberg-Dilworth and C. L. Matasci contributed equally to this work.  相似文献   

3.
The hormone gibberellic acid (GA) regulates growth and development throughout the plant life cycle. DELLA proteins are key components of the GA signalling pathway and act to repress GA responses. The “DELLA” amino acid motif is highly conserved among diverse species and is essential for GA-induced destruction of DELLA proteins, which relieves repression. Six genes encoding the DELLA motif were identified within an apple expressed sequence tag (EST) database. Full-length cDNA clones were obtained by RACE and these were designated MdRGL1a/b, MdRGL2a/b, and MdRGL3a/b. Sequence alignment of the predicted proteins indicates that the MdDELLAs are 37–93% homologous to one another and 44–65% to the Arabidopsis DELLAs. The MdDELLAs cluster into three pairs, which reflect the presumed allopolyploid origins of the Maloideae. Expression analysis using quantitative real-time PCR indicates that all three pairs of MdDELLA mRNAs are expressed at the highest levels in summer arrested shoot tips and in autumn vegetative buds. Transgenic Arabidopsis expressing MdRGL2a have smaller leaves and shorter stems, take longer to flower in short days, and exhibit a reduced response to exogenous GA3, indicating significant conservation of gene function between DELLA proteins from apple and Arabidopsis. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

5.
The availability of suitable genetic markers is essential to efficiently select and breed apple varieties of high quality and with multiple disease resistances. Microsatellites (simple sequence repeats, SSR) are very useful in this respect since they are codominant, highly polymorphic, abundant and reliably reproducible. Over 140 new SSR markers have been developed in apple and tested on a panel of 7 cultivars and 1 breeding selection. Their high level of polymorphism is expressed with an average of 6.1 alleles per locus and an average heterozygosity (H) of 0.74. Of all SSR markers, 115 have been positioned on a genetic linkage map of the cross Fiesta × Discovery. As a result, all 17 linkage groups, corresponding to the 17 chromosomes of apple, were identified. Each chromosome carries at least two SSR markers, allowing the alignment of any apple molecular marker map both with regard to identification as well as to orientation of the linkage groups. To test the degree of conservation of the SSR flanking regions and the transferability of the SSR markers to other Rosaceae species, 15 primer pairs were tested on a series of Maloideae and Amygdaloideae species. The usefulness of the newly developed microsatellites in genetic mapping is demonstrated by means of the genetic linkage map. The possibility of constructing a global apple linkage map and the impact of such a number of microsatellite markers on gene and QTL mapping is discussed.  相似文献   

6.
Summary Electrophoresis of 7 pollen enzymes was applied to 5 progenies from controlled crosses and one self-progeny of apple. Segregation data were examined according to three kinds of hypotheses: monogenic disomic, bigenic disomic and tetrasomic inheritance Twenty codominant alleles and a recessive null were identified. Results provided evidence of bigenic disomic inheritance in most cases: 6 pairs of homoeologous loci carrying identical homoeoalleles were revealed; only 2 enzymes exhibited a simple monogenic control. Preferential pairing between pairs of homologous chromosomes in meiosis can be postulated. These results indicated an allopolyploid origin of apple genome. Fixed heterozygosity occurred for several enzymes, which is a typical feature of allopolyploidy. Loss of duplicate gene expression can account for the monogenic control of 2 of the enzymes.The results reported in this paper are part of a thesis by the first author for the degree of Docteur Ingénieur  相似文献   

7.
8.
Apple is an important crop and a focus of research worldwide. However, some aspects of floral commitment and morphogenesis remain unclear. A detailed characterization of bourse shoot apex development was undertaken to provide a framework for future genetic, molecular and physiological studies. Eight morphologically distinct stages of shoot apex development, prior to winter dormancy, were defined. Based on measurements of meristem diameter, two stages of vegetative development were recognized. Vegetative meristems were flat, and either narrow (stage 0) or broad (stage 1). Pronounced doming of the apex marked stage 2. During stage 3, the domed meristem initiated four to six lateral floral meristems and subtending bracts before converting to a terminal floral meristem (stage 4). The terminal floral meristem proceeded directly with bractlet and sepal initiation, while lateral floral meristems initiated bractlets (stage 5). Sepal initiation began on the basal lateral flower (stage 6) and continued in an acropetal direction until all floral meristems had completed sepal initiation (stage 7). In this study, only stage 0 and stage 7 apices were observed in dormant buds, indicating that stages 1-6 are transient. The results suggest that broadening of the apex (stage 1) is the first morphological sign of commitment to flowering.  相似文献   

9.
Apple polyphenol (procyanidin)–cell wall interactions were investigated and their impact on polysaccharide extractability were determined. Native and oxidised procyanidins with average degrees of polymerisation of 13 and 55 were incubated with cell walls. The effect of polyphenol oxidation was evaluated according to two designs: polyphenols were chemically oxidised either before or during interaction. The extent of procyanidin binding to cell walls was assessed by the weight increase of procyanidin–cell wall complexes as compared to weights of cell walls alone. Pectins and hemicelluloses were subsequently extracted from cell walls and from cell wall–procyanidin adducts using a chelating agent (ammonium oxalate), a pectin lyase treatment and NaOH.Weight increases of complexes ranged from 20% to 29%. Weight gains increased in the following order: native, pre-oxidised, simultaneously oxidised and bound procyanidins, these different fractions were, respectively, bound to cell walls. In presence of native procyanidins, oxalate extracted less pectins, and those pectins had lower degrees of methylation, as compared to cell walls alone. When cell walls were incubated with oxidised and oxidising procyanidins, even less pectins with lower degree of methylation were extracted. Major findings indicated that procyanidins mainly bound to pectins as compared to other cell wall compounds: (1) the procyanidin adsorption to cell walls limited the depolymerisation of pectins supposedly induced by pectin lyase. Thus less pectins were extracted but their degree of methylation increased, indicative of products of lysis of pectin lyase. (2) Hemicelluloses extracted using NaOH (4 M) were more abundant in pectins when oxidised or oxidising procyanidins were complexed rather than non complexed to cell walls.  相似文献   

10.
11.
12.
The effects of cocultivation with Agrobacterium tumefaciens, regeneration and selection conditions on the transformation efficiency of citrange (Citrus sinensis L. Osbeck×Poncirus trifoliata L. Raf.) have been investigated. Factors such as cocultivation period, preculture of explants, use of acetosyringone or feeder plates during cocultivation, cocultivation on a medium rich in auxins, postcultivation in darkness, and different kanamycin concentrations for selection were assessed. A 3-day cocultivation on a medium rich in auxins improved transformation frequencies, since it increased the number of dividing cells competent for transformation, at the cut ends of the explants. Exposure of explants to darkness for 4 weeks on selection medium resulted in further callus development and increased the regeneration frequency of transgenic shoots. Furthermore, this treatment drastically reduced the number of regenerated escape shoots. A transformation efficiency of 41.3% was achieved using the optimized transformation procedure. Received: 4 November 1997 / Revision received: 7 January 1998 / Accepted: 13 February 1998  相似文献   

13.
Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown under high nitrogen (N) supply was observed in previous studies, along with increasing scab susceptibility of cultivar "Golden Delicious" after high N nutrition. Several hypotheses have suggested that there is a trade-off between primary and secondary metabolism because of competition for common substrates, but nothing is known about regulation at the enzyme level. In this study, a set of experiments was performed to elucidate the effect of N nutrition on the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol 4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not evident. However, PAL activity seems to be downregulated, thus forming a bottleneck resulting in a generally decreased flavonoid accumulation. Furthermore, the response of the scab-resistant cultivar "Rewena" to high N nutrition was not as strong as that of the susceptible cultivar "Golden Delicious".  相似文献   

14.
Temperature stress is one of the most common external factors that plants have to adapt to. Accordingly, plants have developed several adaptation mechanisms to deal with temperature stress. Chloroplasts are one of the organelles that are responsible for the sensing of the temperature signal and triggering a response. Here, chloroplasts are purified from low temperature (4° C), control (22° C) and high temperature (30° C) grown Malus x domestica microshoots. The purity of the chloroplast fractions is evaluated by marker proteins, as well as by using in silico subcellular localization predictions. The proteins are digested using filter‐aided sample processing and analyzed using nano‐LC MS/MS. 733 proteins are observed corresponding to published Malus x domestica gene models and 16 chloroplast genome ‐encoded proteins in the chloroplast preparates. In ANOVA, 56 proteins are found to be significantly differentially abundant (p < 0.01) between chloroplasts isolated from plants grown in different conditions. The differentially abundant proteins are involved in protein digestion, cytoskeleton structure, cellular redox state and photosynthesis, or have protective functions. Additionally, a putative chloroplastic aquaporin is observed. Data are available via ProteomeXchange with identifier PXD014212.  相似文献   

15.
Summary A procedure for the regeneration of fertile transgenic white mustard (Sinapis alba L.) is presented. The protocol is based on infection of stem explants of 7–9 day old plants with an Agrobacterium tumefaciens strain harboring a disarmed binary vector with chimeric genes encoding neomycin phosphotransferase and -glucuronidase. Shoots are regenerated from callus-forming explants within 3–4 weeks. Under selection, 10% of the explants with transgenic embryonic callus develop into fertile transgenic plants. Rooting shoots transferred to soil yield seeds within 14–16 weeks following transformation. Integration and expression of the T-DNA encoded marker genes was confirmed by histochemical glucuronidase assays and Southern-DNA hybridization using primary transformants and S1-progeny. The analysis showed stable integration and Mendelian inheritance of trans-genes in transformed Sinapis lines.Abbreviations BAP 6-benzylaminopurine - CaMV cauliflower mosaic virus - GUS -glucuronidase - IBA indole-3-butyric acid - IM infection medium - NAA 1-naphthalene acetic acid - neo gene encoding NPTII - NPTII neomycin phosphotransferase - RIM root-inducing medium - SEM shoot-elongation medium - SIM shoot-inducing medium - t-nos polyadenylation site of the nopaline synthase gene - uidA gene encoding GUS - WM wash medium - X-Gluc 5-bromo-4-chloro-3-indolyl -D-glucuronide  相似文献   

16.
Regeneration of pepino (Solanum muricatum Ait.) shoots was achieved both by organogenesis and by embryogenesis. Shoots derived via organogenesis were easily rooted and most regenerated plants appeared phenotypically normal. Transgenic plants were obtained using the binary vector pKIWI110 in the avirulent Agrobacterium tumefaciens strain LBA4404. Optimization of transformation protocols was rapidly achieved by monitoring early expression of the GUS (-D-glucuronidase) reporter gene carried on pKIWI110. Transgenic plants expressed GUS and selectable marker genes for kanamycin resistance and chlorsulfuron resistance. PCR (polymerase chain reaction) and Southern analysis provided molecular evidence for transformation.  相似文献   

17.
Fruit trees, such as apple (Malus × domestica Borkh.), are woody perennial plants with a long juvenile phase. The biological analysis for the regulation of flowering time provides insights into the reduction of juvenile phase and the acceleration of breeding in fruit trees. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is involved in epigenetic silencing of the target genes such as flowering genes. We isolated and characterized twin apple LHP1 homolog genes, MdLHP1a and MdLHP1b. These genes may have been generated as a result of ancient genome duplication. Although the putative MdLHP1 proteins showed lower similarity to any other known plant LHP1 homologs, a chromo domain, a chromo shadow domain, and the nuclear localization signal motifs were highly conserved among them. RT-PCR analysis showed that MdLHP1a and MdLHP1b were expressed constantly in developing shoot apices of apple trees throughout the growing season. Constitutive expression of MdLHP1a or MdLHP1b could compensate for the pleiotropic phenotype of lhp1/tfl2 mutant, suggesting that apple LHP1 homolog genes are involved in the regulation of flowering time and whole-plant growth. Based on these results, LHP1 homolog genes might have rapidly evolved among plant species, but the protein functions were conserved, at least between Arabidopsis and apple. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD600 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T0 transgenic plants were generated, representing 3.6% transformation frequency. T0 transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T1 progeny. PCR, RT-PCR, and Southern hybridization analysis of T0 and T1 transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T0 and T1 transgenic chickpea plants was achieved maximum up to 116 ng mg−1 of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.  相似文献   

19.
To unravel the relationship between the European wild apple, Malus sylvestris (L.) Mill., and its domesticated relative M. domestica Borkh., we studied chloroplast DNA variation in 634 wild and 422 domesticated accessions originating from different regions. Hybridization between M. sylvestris and M. domestica was checked using 10 nuclear microsatellites and a Bayesian assignment approach. This allowed us to identify hybrids and feral plants escaped from cultivation. Sixty-eight genotypes belonging to 12 other wild Malus species, including 20 M. sieversii (Ledeb.) Roem. accessions were also included in the analysis of chloroplast diversity. Marker techniques were developed to type a formerly described duplication and a newly detected transversion in the matK gene. Chloroplast DNA variation was further investigated using PCR-RFLP (Polymerase Chain Reaction-Random Fragment Length Polymorphism), and haplotypes were constructed based on all mutational combinations. A closer relationship than presently accepted between M. sylvestris and M. domestica was established at the cytoplasmic level, with the detection of eight chloroplast haplotypes shared by both species. Hybridization between M. sylvestris and M. domestica was also apparent at the local level with sharing of rare haplotypes among local cultivars and sympatric wild trees. Indications of the use of wild Malus genotypes in the (local) cultivation process of M. domestica and cytoplasmic introgression of chloroplast haplotypes into M. sylvestris from the domesticated apple were found. Only one of the M. sieversii trees studied displayed one of the three main chloroplast haplotypes shared by M. sylvestris and M. domestica. This is surprising as M. sieversii has formerly been described as the main maternal progenitor of the domesticated apple. This study hereby reopens the exciting discussion on the origin of M. domestica.  相似文献   

20.
Summary Transgenic sweet orange (Citrus sinensis L. Osbeck) plants have been obtained by Agrobacterium tumefaciens-mediated gene transfer. An hypervirulent A. tumefaciens strain harboring a binary vector that contains the chimeric neomycin phosphotransferase II (NPT II) and ß-glucuronidase (GUS) genes was cocultivated with stem segments from in vivo grown seedlings. Shoots regenerated under kanamycin selection were harvested from the stem segments within 12 weeks. Shoot basal portions were assayed for GUS activity and the remaining portions were shoot tip grafted in vitro for production of plants. Integration of the GUS gene was confirmed by Southern analysis. This transformation procedure showed the highest transgenic plant production efficiency reported for Citrus.Abbreviations BA benzyladenine - CaMV cauliflowermosaic virus - GUS ß-glucuronidase - LB Luria Broth - MS Murashige and Skoog - NAA naphthalenacetic acid - NOS nopaline synthase - NPT II neomycin phosphotransferase II - PEG polyethylene glycol - RM rooting medium - SRM shoot regeneration medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号