首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmids have cell cycle replication patterns that need to be considered in models of their replication dynamics. To compare current theories for control of plasmid replication with experimental data for timing of plasmid replication with the cell cycle, a Monte Carlo simulation of plasmid replication and partition was developed. High-copy plasmid replication was simulated by incorporating equations previously developed from the known molecular biology of ColE1-type plasmids into the cell-cycle simulation. Two types of molecular mechanisms for low-copy plasmid replication were tested: accumulation of an initiator protein in proportion to cell mass and binding of the plasmid origin to the cell membrane. The low-copy plasmids were partitioned actively, with a specific mechanism to mediate the transfer from mother to daughter cells, whereas the high-copy plasmids were partitioned passively with cell mass.The simulation results and experimental data demonstrate cell-cycle-specific replication for the low-copy F plasmid and cell-cycle-independent replication for the high-copy pBR322, ColBM, and R6K plasmids. The simulation results indicate that synchronous replication at multiple plasmid origins is critical for the cell-cycle-specific pattern observed in rapidly growing cells. Variability in the synchrony of initiation of multiple plasmid origins give rise to a cell-cycle-independent pattern and is offered as a plausible explanation for the controversy surrounding the replication pattern of the low-copy plasmids. A comparison of experimental data and simulation results for the low-copy F plasmid at several growth rates indicates that either initiation mechanism would be sufficient to explain the timing of replication with the cell cycle. The simulation results also demonstrate that, although cell-cycle-specific and cell-cycle independent replication patterns give rise to very different gene-expression patterns during short induction periods in age-selected populations, long-term expression of genes encoded on low-copy and high-copy plasmids in exponentially growing cells have nearly the same patterns. These results may be important for the future use of low-copy plasmids as expression vectors and validate the use of simpler models for high-copy plasmids that do not consider cell-cycle phenomena. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
3.
Multicopy plasmids are often chosen for the expression of recombinant genes in Escherichia coli. The high copy number is generally desired for maximum gene expression; however, the metabolic burden effects that usually result from multiple plasmid copies could prove to be detrimental for maximum productivity in certain metabolic engineering applications. In this study, low-copy mini-F plasmids were compared to high-copy pMB1-based plasmids for production of two metabolites in E. coli: polyphosphate (polyP) and lycopene derived from isopentenyl diphosphate (IPP). The stationary-phase accumulation of polyP on a per cell basis was enhanced approximately 80% when either high- or low-copy plasmids were used, from 120 micromol/g DCW without augmented polyP kinase (PPK) activity to approximately 220 micromol/g DCW. The cell density of the high-copy plasmid-containing culture at stationary phase was approximately 24% lower than the low-copy culture and 30% lower than the control culture. This difference in cell density is likely a metabolic burden effect and resulted in a lower overall product concentration for the high-copy culture (approximately 130 micromol/L culture) relative to the low-copy culture (approximately 160 micromol/L culture). When the gene for DXP (1-deoxy-D-xylulose 5-phosphate) synthase, the first enzyme in the IPP mevalonate-independent biosynthetic pathway, was expressed from the tac promoter on multicopy and low-copy plasmids, lycopene production was enhanced two- to threefold over that found in cells expressing the chromosomal copy only. Cell growth and lycopene production decreased substantially when isopropyl beta-D-thiogalactosidase (IPTG) was added to the high-copy plasmid-containing culture, suggesting that overexpression of DXP synthase was a significant metabolic burden. In the low-copy plasmid-containing culture, no differences in cell growth or lycopene production were observed with any IPTG concentrations. When dxs was placed under the control of the arabinose-inducible promoter (P(BAD)) on the low-copy plasmid, the amount of lycopene produced was proportional to the arabinose concentration and no significant changes in cell growth resulted. These results suggest that low-copy plasmids may be useful in metabolic engineering applications, particularly when one or more of the substrates used in the recombinant pathway are required for normal cellular metabolism.  相似文献   

4.
The effects of mRNA stability and plasmid copy number on gene expression in Escherichia coli were evaluated by constructing multicopy (pMB1-based) and low-copy (F-based) plasmids containing an arabinose-inducible promoter system, the lacZ reporter gene, and mRNA-stabilizing 5' hairpin structures. Product formation and cell growth were evaluated under a number of inducer concentrations. The introduction of a 5' hairpin into the untranslated region of the mRNA resulted in significantly higher gene expression from the multicopy plasmids at low inducer concentrations and increased gene expression from the low-copy plasmids across all inducer concentrations investigated. With high inducer concentrations, expression from high-copy plasmids significantly slowed cell growth, whereas expression from the low-copy plasmids had little effect on growth rate. At inducer concentrations between 1 x 10(-4) and 4 x 10(-4)%, the productivity of low-copy plasmids containing the 5'-hairpin was equal to or greater than that from multicopy plasmids. Together, these two gene expression strategies may find important use in metabolic engineering and heterologous gene expression.  相似文献   

5.
The thermophilic protease aqualysin I (AQI) gene (aqul), derived from Thermus aquaticus YT-I, was inserted under the control of the bacteriophage T7 promoter in an expression plasmid. The plasmid was introduced into two strains of E. coli JMI09 (DE3), one carrying and one lacking an F’ episome, which carries the lacIq gene. Upon cultivation the strain carrying an F’ episome produced AQI as an insoluble fusion protein (74 kDa) with the T7 gene 10 protein. This insoluble protein could not be processed into mature AQI by heat treatment and thus it had no proteolytic activity. On the other hand, when the strain lacking an F’ episome was used as a host cell for aqul expression, non-induced, or leaky, expression occurred, and AQI was produced in a soluble form. This soluble protein could be processed into active AQI by heat treatment. Moreover, when a low concentration of IPTG (0.0125 mM) was added, the amount of active AQI was 2.7 times greater than that produced in a batch culture without induction.  相似文献   

6.
We have characterized 202 lacI mutations, and 158 dominant lacId mutations following treatment of Escherichia coli strains NR6112 and EE125 with 1-nitroso-6-nitropyrene (1,6-NONP), an activated metabolite of the carcinogen 1,6-dinitropyrene. In all, 91% of the induced point mutations occurred at G:C residues. The −(G:C) frameshifts were the dominant mutational class in the lacI collections of both NR6112 and EE125, and in the lacId collection of NR6112. Frameshift mutations occurred preferentially in runs of guanine residues, and their frequency increased with the length of the reiterated sequence. In strain EE125, which contained the plasmid pKM101, there was a marked stimulation in the frequency of base substitution mutations that was particularly apparent in the lacId collection. This study completes a comprehensive analysis of 1194 lacI and 348 lacId mutations induced by either 1,6-NONP or its positional isomer 1-nitroso-8-nitropyrene (1,8-NONP) in strains of E. coli that differ with regard to their ability to carry out nucleotide excision repair and/or their ability to express the translesion synthesis DNA polymerase RI (MucAB) encoded by plasmid pKM101. Among the mutations are 763 frameshift mutations, 367 base substitutions and 47 deletions; these mutations have been characterized at more than 300 distinct sites in the lacI gene. Our studies provide detailed insight into the DNA sequence alterations and mutational mechanisms associated with dinitropyrene mutagenesis. We review the mutational spectra, and discuss cellular lesion repair or tolerance mechanisms that modulate the observed mutational specificity.  相似文献   

7.
Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc) infect rice, causing bacterial blight and bacterial leaf streak, respectively, which are two economically important bacterial diseases in paddy fields. The interactions of Xoo and Xoc with rice can be used as models for studying fundamental aspects of bacterial pathogenesis and host tissue specificity. However, an improved vector system for gene expression analysis is desired for Xoo and Xoc because some broad host range vectors that can replicate stably in Xoryzae pathovars are low-copy number plasmids. To overcome this limitation, we developed a modular plasmid assembly system to transfer the functional DNA modules from the entry vectors into the pHM1-derived backbone vectors on a high-copy number basis. We demonstrated the feasibility of our vector system for protein detection, and quantification of virulence gene expression under laboratory conditions and in association with host rice and nonhost tobacco cells. This system also allows execution of a mutant complementation equivalent to the single-copy chromosomal integration system and tracing of pathogens in rice leaf. Based on this assembly system, we constructed a series of protein expression and promoter-probe vectors suitable for classical double restriction enzyme cloning. These vector systems enable cloning of all genes or promoters of interest from Xoo and Xoc strains. Our modular assembly system represents a versatile and highly efficient toolkit for gene expression analysis that will accelerate studies on interactions of Xoryzae with rice.  相似文献   

8.
9.
Establishment of New Genetic Traits in a Microbial Biofilm Community   总被引:21,自引:6,他引:15       下载免费PDF全文
Conjugational transfer of the TOL plasmid (pWWO) was analyzed in a flow chamber biofilm community engaged in benzyl alcohol degradation. The community consisted of three species, Pseudomonas putida RI, Acinetobacter sp. strain C6, and an unidentified isolate, D8. Only P. putida RI could act as a recipient for the TOL plasmid. Cells carrying a chromosomally integrated lacIq gene and a lacp-gfp-tagged version of the TOL plasmid were introduced as donor strains in the biofilm community after its formation. The occurrence of plasmid-carrying cells was analyzed by viable-count-based enumeration of donors and transconjugants. Upon transfer of the plasmids to the recipient cells, expression of green fluorescence was activated as a result of zygotic induction of the gfp gene. This allowed a direct in situ identification of cells receiving the gfp-tagged version of the TOL plasmid. Our data suggest that the frequency of horizontal plasmid transfer was low, and growth (vertical transfer) of the recipient strain was the major cause of plasmid establishment in the biofilm community. Employment of scanning confocal laser microscopy on fixed biofilms, combined with simultaneous identification of P. putida cells and transconjugants by 16S rRNA hybridization and expression of green fluorescence, showed that transconjugants were always associated with noninfected P. putida RI recipient microcolonies. Pure colonies of transconjugants were never observed, indicating that proliferation of transconjugant cells preferentially took place on preexisting P. putida RI microcolonies in the biofilm.  相似文献   

10.
A fusion gene usingluxA andluxB genes ofVibrio species has been designed to express light autonomously in plants.LuxA:luxB was introduced into plants by a high-efficiency transformation system consisting of a high-copy virulence helper plasmid pUCD2614 and T-vector pUCD2715 containingluxA:luxB. The expression ofluxA:luxB fusion gene was optimized by adjusting the spacing between the genes and by placing the translational efficiency of its mRNA under the control of the -3 translational enhancer. The resulting transgenic plants synthesized luciferase at levels greater than 1% of the total leaf protein. These plants produced light autonomously and light intensity was enhanced by the addition of aldehyde. That theluxA:luxB fusion has been optimized enables its use as a reporter for gene activity in plants during development and under various stress-inducing conditions. These results show that a specific protein from an introduced foreign gene can be produced with high efficiency in cultivated plants and such a system is therefore amenable for production of desired proteins through conventional farming methods.  相似文献   

11.
Summary We have isolated Saccharomyces cerevisiae mutants, smp, showing stable maintenance of plasmid pSRI, a Zygosaccharomyces rouxii plasmid. The smp mutants were recessive and were classified into at least three different complementation groups. The three mutants also showed increased stability of YRp plasmids and the mutations are additive for plasmid stability. One mutation, smp1, confers a respiration-deficient (rho 0) phenotype and several Rho mutants independently isolated by ethidium bromide treatment of the same yeast strain also showed increased stabilities of pSR1 and YRp plasmids. The wild-type S. cerevisiae cells showed a strongly biased distribution of pSR1 molecules as well as YRp plasmids to the mother cells at mitosis, while the smpf mutant did not show this bias. Another mutation, smp3, at a locus linked to ade2 on chromosome XV, confers temperature-sensitive growth. The SMP3 gene encodes a 59.9 kDa hydrophobic protein and disruption of the gene is lethal.  相似文献   

12.
Summary The lkyB gene of Escherichia coli K12 has been cloned from the Clarke and Carbon colony bank by selecting a ColE1 plasmid conferring cholic acid resistance to lkyB mutants. The lkyB gene was localized on hybrid plasmid pJC778 by analysis of mutated plasmids generated by Tn5 insertions. Restriction analysis and complementation studies indicated that plasmid pJC778 carried genes nadA, lkyB and sucA which mapped at min 16.5; the lkyB + allele was dominant over the lkyB207 mutant allele. Analysis of cell envelope proteins from strains carrying plasmids pJC778 (lkyB +), pJC2578 or pJC2579 (lkyB::Tn5), as well as plasmid-coded proteins in a maxicell system, made it likely that the lkyB gene product was a membrane protein of molecular weight 42,000.  相似文献   

13.
INTRODUCTIONDNA replication is a fundamenial process thatmust occur only once at each ce1l cycle. This restrictcontrol appears to be achieved through the coordi-nated actiVities of numerous proteins. The buddingyeast Saccharompes cerevhaae provides an excellenteukaryotic model fOr study of proteins invo1ved inthe control of DNA replication.In the budding yeast, minichromosome mainte-nance (MCM) proteins, MCM2-7, are a family of strsequence-related proteins that play crucia1 roles inr…  相似文献   

14.
A system is described that enables the cloning of genes specifying detrimental proteins inEscherichia coli. The system is based on pUC plasmids and was developed for the expression of theBacillus subtilis csaA gene, which is lethal when expressed at high levels. Suppressor strains that tolerate the presence of plasmids for high-level expression ofcsaA were isolated, which contained small cryptic deletion variants of the parental plasmid in high copy numbers. The cryptic plasmids consisted mainly of the pUC replication functions and lacked thecsaA region and selectable markers. The co-resident, incompatible, cryptic plasmids enabled the maintenance of thecsaA plasmids by reducing their copy number 20-fold, which resulted in a concomitant 3- to 7-fold reduction in the expression of plasmid-encoded genes. Strains carrying these cryptic endogenous plasmids proved to be useful for the construction of pUC-based recombinant plasmids carrying other genes, such as theskc gene ofStreptococcus equisimilis, which cannot be cloned in high copy numbers inE. coli. Several strategies to reduce production levels of heterologous proteins specified by plasmids are compared.  相似文献   

15.
We created transgenic mice with a bacterial artificial chromosome (BAC) containing the human COL6A1 gene. In high-copy and low-copy transgenic lines, we found correct temporal and spatial expression of COL6A1 mRNA, paralleling the expression of the murine Col6a1 gene in a panel of nine adult and four fetal organs. The only exception was the fetal lung, in which the transgene was expressed poorly compared with the endogenous gene. Expression of COL6A1 mRNA from the transgene was copy number-dependent, and the increased gene dosage correlated with increased production of collagen VI alpha 1 in skin and heart, as indicated by Western blotting and immunohistochemistry. COL6A1 maps to Chromosome 21 and this gene has been a candidate for contributing to cardiac defects and skin abnormalities in Down syndrome. The low-copy and high-copy COL6A1 transgenics were born and survived in normal Mendelian proportions, without cardiac malformations or altered skin histology. These data indicate that the major promoter and enhancer sequences regulating COL6A1 expression are present in this 167-kb BAC clone. The lack of a strong cardiac or skin phenotype in the COL6A1 BAC-transgenic mice suggests that the increased expression of this gene does not, by itself, account for these phenotypes in Down syndrome.  相似文献   

16.
A gene homologous to the Escherichia coli dnaA gene and two flanking 'regulatory' regions which contain nine and four DnaA-boxes respectively, are located in the replication origin region of the Bacillus subtilis chromosome. Attempts to isolate an autonomously replicating fragment from these 'regulatory' regions in order to identify oriC have been unsuccessful because the DnaA-box-containing regions strongly inhibited plasmid transformation particularly when inserted into a high-copy number plasmid pUB110. Using two plasmids differing in copy number, the two regions were subdivided into three regions, A, B and C, each containing five, four and four DnaA-boxes respectively, which differed in level of inhibition of transformation. Region C is downstream of the 'dnaA' gene and inhibits transformation in high-copy but not in low-copy number plasmids. When a part of the DnaA-boxes was deleted from the incompatible plasmids, they became transformable and produced slow-growing transformants in which the initiation frequency of chromosomal replication was selectively reduced. Fast-growing revertants were found containing the same number of plasmids as the parent but with single base changes in the DnaA-boxes. These mutations were in the most highly conserved bases of the DnaA-box sequence. This indicates that a sequence-specific interaction of the DnaA-box, probably with the B. subtilis DnaA protein is responsible for the observed incompatibility and thus appears to be involved in control of initiation frequency of the chromosomal replication.  相似文献   

17.
Analysis of the transfer region of the Streptomyces plasmid SCP2*   总被引:6,自引:4,他引:2  
plJ903, a bifunctional derivative of the 31.4 kb low-copy number, conjugative Streptomyces plasmid SCP2, was mutagenized in Streptomyces lividans using Tn4560. Mutant plasmids differing in their transfer frequencies, chromosome mobilization abilities, pock formation, and complementation properties were isolated. The mutations defined five transfer-related genes, traA, traB, traC, traD and spd, clustered in a region of 9 kb. The deduced sequences of the putative TraA and TraB proteins showed no overall similarity to known protein sequences, but the phenotype of traA mutant plasmids and sequence motifs in the putative TraA protein suggested that it might be a DNA helicase.  相似文献   

18.
 Temperature-regulated expression of recombinant proteins in the tac promoter (Ptac) system was investigated. Expression levels of fungal xylanase and cellulase from N. patriciarum in E. coli strains containing the natural lacI gene under the control of the Ptac markedly increased with increasing cultivation temperature in the absence of a chemical inducer. The specific activities (units per milligram protein of crude enzyme) of the fungal xylanase and cellulase produced from recombinant E. coli strain pop2136 grown at 42°C were about 4.5 times higher than those of the cells grown at 23°C and were even slightly higher when compared with cells grown in the presence of the inducer isopropyl β-D-thiogalactopyranoside. The xylanase expression level in the temperature-regulated Ptac system was about 35% of total cellular protein. However, this system can not be applied to E. coli strains containing lacI q, which confers over production of the lac repressor, for high-level expression of recombinant proteins. In comparison with the λPL system, the Ptac-based xylanase plasmid in E. coli pop2136 gave a considerably higher specific activity of the xylanase than did the best λPL-based construct using the same thermal induction procedure. The high-level expression of the xylanase using the temperature-regulated Ptac system was also obtained in 10-litre fermentation studies using a fed-batch process. These results unambiguously demonstrated that the temperature-modulated Ptac system can be used for overproduction of some non-toxic recombinant proteins. Received: 27 June 1995/Received revision: 13 September 1995/Accepted: 30 September 1995  相似文献   

19.
Horizontal transfer of multiresistance plasmids in the environment contributes to the growing problem of drug-resistant pathogens. Even though the plasmid host cell is the primary environment in which the plasmid functions, possible effects of the plasmid donor on the range of bacteria to which plasmids spread in microbial communities have not been investigated. In this study we show that the host range of a broad-host-range plasmid within an activated-sludge microbial community was influenced by the donor strain and that various mating conditions and isolation strategies increased the diversity of transconjugants detected. To detect transconjugants, the plasmid pB10 was marked with lacp-rfp, while rfp expression was repressed in the donors by chromosomal lacIq. The phylogeny of 306 transconjugants obtained was determined by analysis of partial 16S rRNA gene sequences. The transconjugants belonged to 15 genera of the α- and γ-Proteobacteria. The phylogenetic diversity of transconjugants obtained in separate matings with donors Pseudomonas putida SM1443, Ralstonia eutropha JMP228, and Sinorhizobium meliloti RM1021 was significantly different. For example, the transconjugants obtained after matings in sludge with S. meliloti RM1021 included eight genera that were not represented among the transconjugants obtained with the other two donors. Our results indicate that the spectrum of hosts to which a promiscuous plasmid transfers in a microbial community can be strongly influenced by the donor from which it transfers.  相似文献   

20.
A dual promoter probe system based on a tandem bi-cistronic GFP-luxCDABE reporter cassette is described and implemented. This system is assembled in two synthetic, modular, broad-host range plasmids based on pBBR1 and RK2 origins of replication, allowing its utilization in an extensive number of gram-negative bacteria. We analyze the performance of this dual cassette in two hosts, Escherichia coli and Pseudomonas putida, by examining the induction properties of the lacIq-Ptrc expression system in the first host and the Pb promoter of the benzoate degradation pathway in the second host. By quantifying the bioluminescence signal produced through the expression of the lux genes, we explore the dynamic range of induction for the two systems (Ptrc-based and Pb-based) in response to the two inducers. In addition, by quantifying the fluorescence signals produced by GFP expression, we were able to monitor the single-cell expression profile and to explore stochasticity of the same two promoters by flow cytometry. The results provided here demonstrate the power of the dual GFP-luxCDABE cassette as a new, single-step tool to assess promoter properties at both the population and single-cell levels in gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号