首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due its innate ability to produce extracellular enzymes which can provide eco‐friendly solutions for a variety of biotechnological applications, Paecilomyces variotii is a potential source of industrial bioproducts. In this review, we report biotechnological records on the biochemistry of different enzymes produced by the fermentation of the P. variotii fungus, including tannases, phytases, cellulases, xylanases, chitinases, amylases and pectinases. Additionally, the main physicochemical properties which can affect the enzymatic reactions of the enzymes involved in the conversion of a huge number of substrates to high‐value bioproducts are described. Despite all the background information compiled in this review, more research is required to consolidate the catalytic efficiency of P. variotii, which must be optimized so that it is more accurate and reproducible on a large scale.  相似文献   

2.
3.
The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.  相似文献   

4.

Background  

Phosphoribosyl pyrophosphate (PRPP) is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability.  相似文献   

5.
White-rot fungi that are efficient lignin degraders responsible for its turnover in nature have appeared twice in the center of biotechnological research — first, when the lignin degradation process started being systematically investigated and major enzyme activities and mechanisms involved were described, and second, when the huge remediation potential of these organisms was established. Originally, Phanerochaete chrysosporium became a model organism, characterized by a secondary metabolism regulatory pattern triggered by nutrient (mostly nitrogen) limitation. Last decade brought evidence of more varied regulatory patterns in white-rot fungi when ligninolytic enzymes were also abundantly synthesized under conditions of nitrogen sufficiency. Gradually, research was focused on other species, among them Irpex lacteus showing a remarkable pollutant toxicity resistance and biodegradation efficiency. Systematic research has built up knowledge of biochemistry and biotechnological applicability of this fungus, stressing the need to critically summarize and estimate these scattered data. The review attempts to evaluate the information on I. lacteus focusing on various enzyme activities and bioremediation of organopollutants in water and soil environments, with the aim of mediating this knowledge to a broader microbiological audience.  相似文献   

6.
Cordyceps militaris is a potential harborer of biometabolites for herbal drugs. For a long time, C. militaris has gained considerable significance in several clinical and biotechnological applications. Much knowledge has been gathered with regard to the C. militaris's importance in the genetic resources, nutritional and environmental requirements, mating behavior and biochemical pharmacological properties. The complete genome of C. militaris has recently been sequenced. This fungus has been the subject of many reviews, but few have focused on its biotechnological production of bioactive constituents. This mini-review focuses on the recent advances in the biotechnological production of bioactive compositions of C. militaris and the latest advances on novel applications from this laboratory and many others.  相似文献   

7.
The genus Pycnoporus forms a cosmopolitan group of four species belonging to the polyporoid white-rot fungi, the most representative group of homobasidiomycetes causing wood decay. Pycnoporus fungi are listed as food- and cosmetic-grade microorganisms and emerged in the early 1990s as a genus whose biochemistry, biodegradation and biotechnological properties have since been progressively detailed. First highlighted for their original metabolic pathways involved in the functionalization of plant cell wall aromatic compounds to yield high-value molecules, e.g. aromas and antioxidants, the Pycnoporus species were later explored for their potential to produce various enzymes of industrial interest, such as hydrolases and oxidases. However, the most noteworthy feature of the genus Pycnoporus is its ability to overproduce high redox potential laccase—a multi-copper extracellular phenoloxidase—as the predominant ligninolytic enzyme. A major potential use of the Pycnoporus fungi is thus to harness their laccases for various applications such as the bioconversion of agricultural by-products and raw plant materials into valuable products, the biopulping and biobleaching of paper pulp and the biodegradation of organopollutants, xenobiotics and industrial contaminants. All the studies performed in the last decade show the genus Pycnoporus to be a strong contender for white biotechnology. In this review, we describe the properties of Pycnoporus fungi in relation to their biotechnological applications and potential.  相似文献   

8.
9.
N-Acetyl-d-neuraminic acid (Neu5Ac) and its derivates are a very important group of biomolecules because these sugars occupy the terminal positions in numerous macromolecules, such as the glycans of glycoproteins, and are involved in many biological and pathological phenomena. The synthesis and applications of Neu5Ac are attracting much interest due to the potential applications of this compound in the pharmaceutical industry, such as in the synthesis of the anti-flu drug zanamivir. In this review article, we discuss existing knowledge on the biotechnological production and applications of Neu5Ac and also propose some guidelines for future studies.  相似文献   

10.
Non‐symbiotic hemoglobin (nsHb) genes are ubiquitous in plants, but their biological functions have mostly been studied in model plant species rather than in crops. nsHb influences cell signaling and metabolism by modulating the levels of nitric oxide (NO). Class 1 nsHb is upregulated under hypoxia and is involved in various biotic and abiotic stress responses. Ectopic overexpression of nsHb in Arabidopsis thaliana accelerates development, whilst targeted overexpression in seeds can increase seed yield. Such observations suggest that manipulating nsHb could be a valid biotechnological target. We studied the effects of overexpression of class 1 nsHb in the monocotyledonous crop plant barley (Hordeum vulgare cv. Golden Promise). nsHb was shown to be involved in NO metabolism in barley, as ectopic overexpression reduced the amount of NO released during hypoxia. Further, as in Arabidopsis, nsHb overexpression compromised basal resistance toward pathogens in barley. However, unlike Arabidopsis, nsHb ectopic overexpression delayed growth and development in barley, and seed specific overexpression reduced seed yield. Thus, nsHb overexpression in barley does not seem to be an efficient strategy for increasing yield in cereal crops. These findings highlight the necessity for using actual crop plants rather than laboratory model plants when assessing the effects of biotechnological approaches to crop improvement.  相似文献   

11.
12.
Treatment of Linum album cell cultures with 10 μM salicylic acid (SA) for 3 days improved podophyllotoxin (PTOX) production up to 333 μg/g dry weight (DW): over three times that of the control cultures. qPCR analyses showed that in SA-treated cells, the expression of the genes coding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD), all involved in the first steps of PTOX biosynthesis, also increased reaching a peak 8–12 h after the treatment. Expression of the pinoresinol-lariciresinol reductase gene (PLR), which is involved in one of the last biosynthetic steps, was not affected by SA. The selective action of SA on these genes can be applied to control the biotechnological production of this anticancer agent.  相似文献   

13.
Thermus spp is one of the most wide spread genuses of thermophilic bacteria, with isolates found in natural as well as in man-made thermal environments. The high growth rates, cell yields of the cultures, and the constitutive expression of an impressively efficient natural competence apparatus, amongst other properties, make some strains of the genus excellent laboratory models to study the molecular basis of thermophilia. These properties, together with the fact that enzymes and protein complexes from extremophiles are easier to crystallize have led to the development of an ongoing structural biology program dedicated to T. thermophilus HB8, making this organism probably the best so far known from a protein structure point view. Furthermore, the availability of plasmids and up to four thermostable antibiotic selection markers allows its use in physiological studies as a model for ancient bacteria. Regarding biotechnological applications this genus continues to be a source of thermophilic enzymes of great biotechnological interest and, more recently, a tool for the over-expression of thermophilic enzymes or for the selection of thermostable mutants from mesophilic proteins by directed evolution. In this article, we review the properties of this organism as biological model and its biotechnological applications.  相似文献   

14.

Background  

Pantoea ananatis, a member of the Enterobacteriacea family, is a new and promising subject for biotechnological research. Over recent years, impressive progress in its application to L-glutamate production has been achieved. Nevertheless, genetic and biotechnological studies of Pantoea ananatis have been impeded because of the absence of genetic tools for rapid construction of direct mutations in this bacterium. The λ Red-recombineering technique previously developed in E. coli and used for gene inactivation in several other bacteria is a high-performance tool for rapid construction of precise genome modifications.  相似文献   

15.
Klebsiella spp are one of the best natural producers of 1,3-propanediol (1,3-PD). However, their usage in the biotechnological production of the diol is limited, since the species belong to the second hazard group. Nevertheless, multiple advantageous traits of Klebsiella spp justify the international effort devoted to develop a biotechnological process of 1,3-PD production with these microorganisms. Apart from the process engineering approach aiming at improvement of 1,3-PD production by Klebsiella spp, plethora of metabolic engineering approaches have been reported. Different strategies have been undertaken to genetically improve Klebsiella strains and provide them with the ability to synthesize 1,3-PD more efficiently. These include over-expression of both homologous and heterologous genes of the 1,3-PD synthesis pathway, protein and cofactor engineering, deletion of the genes involved in by-products formation. This review provides an overview of the initial and most recent reports on the metabolic engineering of Klebsiella spp with the aim of improvement of 1,3-PD biosynthesis.  相似文献   

16.
Microbial diversity is a major resource for biotechnological products and processes. Bacteria are the most dominant group of this diversity which produce a wide range of products of industrial significance. Paenibacillus polymyxa (formerly Bacillus polymyxa), a non pathogenic and endospore-forming Bacillus, is one of the most industrially significant facultative anaerobic bacterium. It occurs naturally in soil, rhizosphere and roots of crop plants and in marine sediments. During the last two decades, there has been a growing interest for their ecological and biotechnological importance, despite their limited genomic information. P. polymyxa has a wide range of properties, including nitrogen fixation, plant growth promotion, soil phosphorus solubilisation and production of exopolysaccharides, hydrolytic enzymes, antibiotics, cytokinin. It also helps in bioflocculation and in the enhancement of soil porosity. In addition, it is known to produce optically active 2,3-butanediol (BDL), a potentially valuable chemical compound from a variety of carbohydrates. The present review article aims to provide an overview of the various roles that these microorganisms play in the environment and their biotechnological potential.  相似文献   

17.
A proteomic approach was employed to elucidate the response of an agriculturally important microbe, Anabaena sp. strain PCC7120, to methyl viologen (MV). Exposure to 2 μM MV caused 50% lethality (LD50) within 6 h and modified the cellular levels of several proteins. About 31 proteins increased in abundance and 24 proteins decreased in abundance, while 55 proteins showed only a minor change in abundance. Of these, 103 proteins were identified by MS. Levels of proteins involved in ROS detoxification and chaperoning activities were enhanced but that of crucial proteins involved in light and dark reactions of photosynthesis declined or constitutive. The abundance of proteins involved in carbon and energy biogenesis were altered. The study elaborated the oxidative stress defense mechanism deployed by Anabaena, identified carbon metabolism and energy biogenesis as possible major targets of MV sensitivity, and suggested potential biotechnological interventions for improved stress tolerance in Anabaena 7120.  相似文献   

18.
M. Iriti    F. Quaglino    D. Maffi    P. Casati    P. A. Bianco    F. Faoro 《Journal of Phytopathology》2008,156(1):8-14
Stolbur phytoplasma infection has been reported, for the first time, in a new host, Solanum malacoxylon, growing in the Botanical Garden of Milan University. This shrub, native of South America, synthesizes vitamin D compounds, important for biomedical and biotechnological purposes. Pathogen detection was performed by light and transmission electron microscopy, and confirmed by molecular diagnosis, based on PCR and restriction fragment length polymorphic (RFLP) analysis of the phytoplasmal 16S rRNA and tuf genes. By means of enzymatic restriction and phylogenetic analysis on these genes, it was found that the phytoplasma belongs to the Stolbur group, taxonomic subgroup 16SrXII‐A, thus indicating S. malacoxylon as an additional host for this pathogen. Solanum malacoxylon could be then involved in the natural Stolbur phytoplasma spreading throughout South American areas, where this wild plant grows endemically.  相似文献   

19.
Lactococcus lactis is a bacteria with high biotechnological potential, where is frequently used in the amino acid production and production of fermented dairy products, as well as drug delivery systems and mucosal vaccine vector. The knowledge of a functional core proteome is important extremely for both fundamental understanding of cell functions and for synthetic biology applications. In this study, we characterized the L. lacits proteome from proteomic analysis of four biotechnological strains L. lactis: L. lactis subsp. lactis NCDO2118, L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris NZ9000 and L. lactis subsp. cremoris MG1363. Our label-free quantitative proteomic analysis of the whole bacterial lysates from each strains resulted in the characterization of the L. lactis core proteome that was composed by 586 proteins, which might contribute to resistance of this bacterium to different stress conditions as well as involved in the probiotic characteristic of L. lactis. Kegg enrichment analysis shows that ribosome, metabolic pathways, pyruvate metabolism and microbial metabolism in diverse environments were the most enriched. According to our quantitative proteomic analysis, proteins related to translation process were the more abundant in the core proteome, which represent an important step in the synthetic biology. In addition, we identified a subset of conserved proteins that are exclusive of the L. lactis subsp. cremoris or L. lactis subsp. lactis, which some are related to metabolic pathway exclusive. Regarding specific proteome of NCDO2118, we detected ‘strain-specific proteins’. Finally, proteogenomics analysis allows the identification of proteins, which were not previously annotated in IL1403 and MG1363. The results obtained in this study allowed to increase our knowledge about the biology of L. lactis, which contributes to the implementation of strategies that make it possible to increase the biotechnological potential of this bacterium.  相似文献   

20.
p‐Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened β‐barrel surrounding an internal cavity. Crystallographic and functional analyses of single‐point mutants of residues located within this cavity have permitted identifying a potential substrate‐binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two‐step catalytic mechanism for decarboxylation of p‐coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO2 product. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号